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Abstract

Today’s classical planners are powerful, but modeling input
tasks in formats such as PDDL is tedious and error-prone.
In contrast, planning with Large Language Models (LLMs)
allows for almost any input text, but offers no guarantees on
plan quality or even soundness. In an attempt to merge the
best of these two approaches, some work has begun to use
LLMs to automate parts of the PDDL creation process. How-
ever, these methods still require various degrees of expert
input. We present NL2Plan, the first domain-agnostic offline
LLM-driven planning system. NL2Plan uses an LLM to in-
crementally extract the necessary information from a short
text prompt before creating a complete PDDL description of
both the domain and the problem, which is finally solved by
a classical planner. We evaluate NL2Plan on four planning
domains and find that it solves 10 out of 15 tasks—a clear
improvement over a plain chain-of-thought reasoning LLM
approach, which only solves 2 tasks. Moreover, in two out
of the five failure cases, instead of returning an invalid plan,
NL2Plan reports that it failed to solve the task. In addition
to using NL2Plan in end-to-end mode, users can inspect and
correct all of its intermediate results, such as the PDDL repre-
sentation, increasing explainability and making it an assistive
tool for PDDL creation.

Introduction
The field of AI planning has developed powerful domain-
independent planners such as Fast Downward (Helmert 2006),
which can solve planning tasks very efficiently. The plans
they generate are sequences of actions that transform the
initial state to a goal state (Ghallab, Nau, and Traverso 2004).
The most common format for specifying such problems is the
Problem Domain Definition Language (PDDL) (McDermott
et al. 1998). This is a declarative programming language that
can be used to define the available actions, predicates and
types, as well as the existing objects, their initial states, and
any goal requirements. Specifying the PDDL for the domain-
independent planners is, however, a labor-intensive task that
requires PDDL-trained users and an understanding of the
domain under consideration.

Recent advances regarding large language models (LLMs)
have led researchers to develop methods that instead oper-
ate directly on natural language descriptions of problems
(Valmeekam et al. 2023b). LLMs are models pre-trained on
large amounts of textual data and then fine-tuned on spe-

cific tasks such as question answering, coding, or solving
math problems (Brown et al. 2020). Their ability to plan has
been generally poor, however. In particular, LLMs commonly
“forget” the long-term effects of actions and their physical
requirements even when given domain-specific adaptions and
examples (Valmeekam et al. 2023a; Stein et al. 2024; Liu
et al. 2023). Nevertheless, LLM-driven online planners (Yao
et al. 2023b; Shinn et al. 2023) have been created. These use
in-domain examples to select actions one at a time and then
receive updates from the environment or simulators, after
which they select the next action. Conversely, offline reason-
ers (Wei et al. 2022; Yao et al. 2023a; Xie et al. 2023a; Hao
et al. 2023) have been developed with a focus on high-quality
question answering and deduction, as well as domain-depen-
dent offline planners (Hao et al. 2023; Huang et al. 2022).
The fact that these systems use natural language texts as in-
put makes them easy to apply even for untrained users and
enables many use cases.

In light of the complementary strengths of PDDL- and
LLM-based methods, there has been recent work mixing the
two approaches in various ways. For example, LLMs have
been used to generate parts of the PDDL descriptions (Liu
et al. 2023; Dagan, Keller, and Lascarides 2023; Guan et al.
2023; Collins et al. 2022; Zhou et al. 2023; Lyu et al. 2023),
to initialize classical planners (Valmeekam et al. 2023b),
and to solve PDDL-specified problems (Silver et al. 2022,
2023; Pallagani et al. 2022). Conversely, PDDL descriptions
have been used to automatically validate LLM-made plans
(Valmeekam et al. 2023b; Zhou et al. 2023). However, to our
knowledge, no current approach autonomously creates entire
PDDL descriptions from natural text. Instead, each method
focuses on generating parts of the PDDL, such as the actions
and predicates (Guan et al. 2023), just the goal state (Lyu et al.
2023; Xie et al. 2023b), or both the initial and goal state (Liu
et al. 2023; Dagan, Keller, and Lascarides 2023; Collins et al.
2022; Zhou et al. 2023). These methods additionally require
structured or domain-dependent inputs, such as other parts of
the PDDL and examples from the current domain (Liu et al.
2023; Dagan, Keller, and Lascarides 2023; Collins et al. 2022;
Zhou et al. 2023; Lyu et al. 2023) or explicit descriptions of
all types and actions (Guan et al. 2023). There are also non-
LLM-based methods to generate PDDL autonomously, but
these generally use large amounts of text (Huo et al. 2020),
examples of successful plans (Gugliermo et al. 2023), or
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Figure 1: A block scheme of NL2Plan and its six steps. During the Type Extraction step we generate a set of object types, which
are then structured into a tree by the Type Hierarchy step. Following this, the Action Extraction step creates a list of natural
language action descriptions, which the Action Construction step formalizes in PDDL. Task Extraction is the final LLM-driven
step and creates the initial state and goal description. Lastly, the Planning step uses an automatic planner to generate a plan or
show that the modeled task is unsolvable. In each LLM-driven step, a human or LLM instance can optionally provide further
feedback on the solution. The user only has to interact with NL2Plan to provide the natural language task.

specific input data structures (Malburg, Klein, and Bergmann
2023) and thus are more difficult to apply.

In this paper, we generalize and build upon the existing nat-
ural language-to-PDDL systems, adding pre-processing steps
and automated common sense feedback to create NL2Plan.
NL2Plan is, to our knowledge, the first domain-agnostic of-
fline natural language planning system and uses an LLM
to generate complete PDDL descriptions and corresponding
plans based on only a few sentences of natural language,
without needing any domain-specific adaptations. It employs
the LLM to incrementally extract relevant information and
to construct the PDDL over five steps: Type Extraction, Hier-
archy Construction, Action Extraction, Action Construction,
and Task Extraction. Each step optionally utilizes feedback
from either a human or another LLM instance to encourage
correctness. The Action Construction and Task Extraction
steps additionally use automatic validation to enforce correct
formatting. In the final step, the PDDL task is then solved by
a classical planner, guaranteeing that the final plan is sound
for the task model. We illustrate NL2Plan in Figure 1.

To evaluate NL2Plan, we run it on four planning domains,
three from Guan et al. (2023) and one from Christen et al.
(2023). We find that NL2Plan correctly solves 10 out of 15
tasks, a clear improvement from directly applying an LLM
which solves only 2. Furthermore, while many LLM-driven
methods are unaware of when they fail and simply return
invalid solutions, NL2Plan’s use of a classical planner al-
lows it to identify 2 out of 5 failure cases and return “No
plan found” instead. This property could be valuable in cases
where executing failed plans is expensive, and otherwise,
NL2Plan could be automatically re-run on failures to in-
crease the chance of producing valid plans. Additionally,

using a PDDL representation allows a user to understand
how NL2Plan interprets the task and why it plans in the way
it does, making the generated plans explainable and mitigat-
ing the black-box nature of applying LLMs. The fact that
NL2Plan generates PDDL from simple inputs would also
allow it to act as a tool to assist humans in creating domain
descriptions for new areas.

Background
In this section, we formally introduce PDDL and describe
the prompting techniques used for NL2Plan.

Planning Domain Definition Language (PDDL)
PDDL (McDermott et al. 1998) is the predominant speci-
fication language for deterministic planning problems. We
assume basic familiarity with the semantics of PDDL and
refer to the language definition for details (Fox and Long
2003). We consider “level 1” of PDDL version 2.1, plus
action costs. This fragment includes all ADL features (Ped-
nault 1989), such as quantified and conditional effects, and
negation, disjunction and quantification in conditions.

For our technical contributions, we only need definitions of
the main building blocks of PDDL. A PDDL task consists of
a domain description D and a problem specification P . The
domain specifies the common properties of the environment:
the type hierarchy T , predicate set P , and action schemas A;
D = ⟨T,P, A⟩. The problem defines the task specifics: the
available objects O, initial state I , and the goal description
G; P = ⟨O, I,G⟩.

Within domain D = ⟨T,P, A⟩, type hierarchy T specifies
which types exist and their relationship. For example, T could



specify that the types Truck, Plane, and Vehicle exist and that
both Plane and Truck are subtypes of Vehicle.

Each predicate p ∈ P is defined over a tuple of arguments,
where each argument has a type t ∈ T . By substituting
all arguments of a predicate p with objects o ∈ O of valid
types, we obtain a Boolean proposition p(o1, . . . , om). We
call this substitution process grounding and the resulting
proposition grounded. For example, the grounded proposition
at(truck1, loc1) holds in those states where truck1 is at loc1.
These propositions define the state space of the problem.

Similarly, A is a set of action schemas a ∈ A, each of
which in turn is a tuple a = ⟨name(a), pre(a), eff (a)⟩.
Here, name(a) is the name of action a and pre(a) is its
precondition, a first-order logical expression over P which
must be true for a to be executable. Effect eff (a) instead
defines what happens when a is executed. Action schemas
can then be grounded in the same way as predicates. For
example, the grounded action aload which loads a pack-
ages p1 into a truck t1 at a location l1 can be defined as:
name(aload) = load , pre(aload) = at(p1, l1) ∧ at(t1, l1),
eff (aload) = loaded(p1, t1) ∧ ¬at(p1, l1).

In a problem specification P = ⟨O, I,G⟩, set O consists
of objects ok = ⟨n, t⟩, where n is the object name and t ∈ T
is its type. Initial state I is a function that assigns a Boolean
value to all propositions. Finally, G defines which states are
goal states via a logical expression over P . For example, to
require package p1 and p2 to be at location loc1 and loc2,
respectively, one can define G = at(p1, loc1) ∧ at(p2, loc2).

A plan π is then a sequence of m grounded actions π =
⟨a1, . . . , am⟩ such that these can be applied in sequence given
their preconditions and that this transforms state I into one
satisfying G.

Prompting Large Language Models
LLMs are commonly controlled via descriptive inputs, so-
called prompts (Brown et al. 2020). Various techniques have
been developed to improve these prompts and thereby in-
crease the quality of LLM responses. We mainly use two:
few-shot prompting (Brown et al. 2020) and chain-of-thought
reasoning (Wei et al. 2022).

Few-shot prompting entails adding examples of the desired
behavior to the prompt and has been shown to allow LLMs to
adapt to various tasks without fine-tuning (Brown et al. 2020).
In NL2Plan, each step uses either one or three examples, so-
called one-shot and three-shot prompting respectively.

Chain-of-thought reasoning (CoT) encourages the LLM to
reason about its response and to analyze the task step by step,
leading to improvements in most tasks for larger LLMs. This
can be done either through few-shot examples or as a part of
the instructions (Wei et al. 2022; Kojima et al. 2022). We use
CoT reasoning for all prompts in NL2Plan.

Schemas for the prompts used can be found in Appendix C.
We developed these using GPT-4-1106-preview, a somewhat
different LLM than the one used for evaluation (default GPT-
4), and a non-testing domain, Logistics (McDermott 2000).

NL2Plan
NL2Plan is to our knowledge the first offline domain-ag-
nostic natural language to plan system. We created it via

generalizing existing methods for generating PDDL from nat-
ural language, adding pre-processing steps and LLM-based
common-sense feedback. The only input needed is a task de-
scription in natural language which the system then internally
analyses before returning a plan, or identifying that it fails
to solve the task. The internal analysis takes the form of an
incremental extraction of task-specific information, followed
by the formalization thereof into a PDDL domain and prob-
lem specification, which lastly is passed to a classical planner.
This uses the LLM for its strengths, language comprehension
and general world knowledge, while the planning task itself,
which LLMs have shown to be poor at, is left to the planner.

The six steps in NL2Plan are the following (see Figure 1):

• Type Extraction: The LLM defines which types, such
as Truck, Plane, and Vehicle, should be available for the
task.

• Hierarchy Construction: The LLM organizes the types,
for example defining that Truck and Plane are both sub-
types of Vehicle.

• Action Extraction: The LLM describes which actions
should be available in natural language, for example,
load vehicle and fly plane.

• Action Construction: The LLM formalizes the actions
in PDDL, dynamically creating the necessary predicates.

• Task Extraction: The LLM defines the initial state and
goal description.

• Planning: The classical planner solves the generated
PDDL, returning a plan or proving unsolvability.

Each LLM-based step optionally uses a feedback source,
either another LLM instance or a human user. If the feed-
back source provides advice, a new prompt is formed by
concatenating the original prompt, the LLM’s first solution,
and the feedback. Then, a new solution is generated using
the resulting prompt. Such a feedback loop occurs at most
once per step. The Action Construction and Task Extraction
steps additionally use an automatic validation tool to check
that the generated PDDL is valid. Several possible mistakes
are checked by the validation tool, see Appendix E for the
full lists, and if it finds an error a suggested fix is supplied
as feedback in the same way as above. The overall pipeline
is visualized in Figure 1 and we showcase illustrative input-
output pairs in Figures 2 and 3. Additionally, we share both
more complete input-output pairs and the prompt schemas in
Appendix C.

Prompting and Feedback
The prompt for the main task in each step is a one-shot CoT
prompt consisting of a solution, partially flawed feedback,
and a corrected solution. We opted for one-shot CoT as even
this results in some steps having very long prompts, and
providing more examples would make these longer than GPT-
4’s context window. While we could provide the simpler steps
or the first prompt (when no feedback is available) with more
examples, we chose to unify the method. The partially flawed
feedback includes both good advice and bad, which is then
responded to in the corrected solution. We included flawed
feedback due to early testing showing LLMs’ tendency to



1: Type Extraction

The AI agent here is a logistics planner that has to
plan to transport packages within the locations in a
city through a truck and between cities through an
airplane. In a city, all the locations are connected.
Similarly, cities are directly connected allowing air-
planes to travel between them. Also, there is no
limit to how many packages a truck or plane can
carry.

Available types::
• City: A city contains locations. . .
• Plane: Planes fly between cities. . .
• Truck: Trucks travel inside cities. . .
• Package: Carried by planes and trucks. . .
• Location: Places within cities where. . .

2: Hierarchy Construction

• City: A city contains locations. . .
• Plane: Planes fly between cities. . .
• Truck: Trucks travel inside cities. . .
• Package: Carried by planes and trucks. . .
• Location: Places within cities where. . .
• Airport: Location where planes. . .

Hierarchy:
• object: Everything is an object

• package: Packages are independent.
• vehicle: Vehicles transport things.

• truck: Trucks are vehicles.
• plane: Planes are vehicles.

• city: Not a location, but contains them.
• location: Visitable places.

3: Action Extraction

The AI agent here is a logistics planner that has
to plan to transport packages. . .

The available types are:
• object: Everything is an object

• Package: Carried by planes and. . .
• vehicle: Vehicles transport things.

• truck: Trucks travel inside cities. . .
• Plane: Planes fly between cities. . .

. . .

Actions:
• load: Load a package on a vehicle. Requires...
• drive: Drives a truck within a city. Requires...
• fly: Flies a plane between cities. Requires...

. . .

4: Action Construction

load
Load a package on a vehicle. Requires that both the package and the vehicle are
at the same location. Example: truck1 loads package2 at storage3.

Available predicates:
• (at ?o - object ?l - location): true if the object is at the specified location.

# Parameters:
• ?p - package: The package to be loaded
• ?v - vehicle: The vehicle onto which the package is being loaded
• ?l - location: The location where the loading is taking place

# Preconditions:
(and ; Both objects have to be at the location

(at ?p ?l) ; The package is at the location
(at ?v ?l) ; The vehicle is at the location

)

# Effects:
(and ; All these effects happen

(not (at ?p ?l)) ; The package is no longer at the location
(loaded ?p ?v) ; The package is instead loaded in the vehicle

)

# New Predicates:
• (loaded ?p - package ?v - vehicle): true if the package is in the vehicle.

5: State-Goal Extraction

Currently I’ve got four packages to ship, 2 in a storage in Paris and the rest
in London. Those from London should be sent 1 to Addr1 in Paris and 1 to
Addr2 in Berlin. Those from Paris should all be moved to London’s storage.
The only plane is currently in London, but each city has its own truck and airport.

Available predicates:
• (at ?o - object ?l - location): true if the object is at the specified location.

. . .

# Available Objects:
• p1 p2 p3 p4 - package: The four packages to move
• storeL, storeP, Addr1, Addr2: The locations to ship to and from

. . .

# Initial State:
(at p1 storeP) ; package 1 is in the Paris storage
(at p2 storeP) ; package 2 is in the Paris storage
. . .

# Goal State:
(and ; All these are needed

(at p1 storeL) (at p2 storeL) ; Paris packages go to London
(at p3 Addr1) (at p4 Addr2) ; London packages go to Addr1 and Addr2

)

Figure 2: Illustrative input-output pairs from the NL2Plan steps. For space reasons, we removed large portions of both the inputs
and outputs. More complete examples can be found in Appendix C.

be overly agreeable, accepting bad advice from other LLM
instances.

The LLM-feedback prompts are all three-shot CoT
prompts with checklists. The first two exemplars are task-
dependent showcases of flawed inputs, such as a missing
required action, followed by answers to the checklist, and
finally a list of concrete improvements. The final example
is a correct input which is accepted without feedback, after
being analyzed according to the checklist, the aim of which
is to show feedback does not have to be provided if the input
is valid. An example of this is shown in Figure 3 and all
checklists are found in Appendix D.

Type Extraction
In the first step, we use the LLM to extract which types
should be available in the domain. Notably, explicitly men-
tioned objects, such as Bob or Paris, should be modeled not
with their names but rather with their types, Human and City
in this example. The result is a list of types along with de-

scriptive comments. See Figure 2 for an illustrative example
and Appendix C for a more complete one.

Hierarchy Construction
Given a list of types, we then let the LLM organize them as
sub-types. The LLM first reasons about the provided types,
and then places them into a tree structure. It is also able to
generate new parent types if needed, such as adding a Vehicle
type to organize the requested Plane and Truck types as sub-
types thereof. During development, we noticed that the order
of the supplied types had a large effect. For simplicity, we sup-
ply them in the order generated by the Type Extraction step
and rely on the feedback to provide any needed corrections.
See Figure 2 for an illustrative example and Appendix C for
a more complete one.

Action Extraction
During the Action Extraction step, we make the LLM report
which actions are needed for the requested task based on



Feedback Example

Your task is to evaluate if a set of types are correct and
sufficent for modelling a given domain.

Domain:
The AI agent here is a logistics planner that has to plan to
transport packages within the locations in a city through a
truck and between cities through an airplane. In a city, all
the locations are connected. Similarly, cities are directly
connected allowing airplanes to travel between them. Also,
there is no limit to how many packages a truck or plane
can carry.

Types:
• city: A city contains locations. . .
• truck: Trucks travel inside cities. . .
• package: Carried by trucks. . .
• house: A location visited by trucks. . .

1. Are there additional types which are needed to model
the domain?
The domain describes the existence of airplanes, which
are not included. As such: Yes.

2. Are additional types needed for organising the type
hierarchy?
The inclusion of both “truck” and “airplan” (see above)
motivates the addition of a “vehicle” type. Hence: Yes.

. . .

My concrete suggestions are:
• Add the following types:

– airplane: airplanes fly between. . .
– vehicle: Trucks and planes which. . .

• Replace the “house” type with a more general “loca-
tion” type.

• Update the descriptions of “city” and “package” to
reflect the above changes.

Figure 3: An illustrative example of the automatic LLM-driven Type Extraction feedback substep. The checklists vary between
NL2Plan steps, see Appendix D.

the defined types and its world knowledge. Each such action
is described with a name, description, and usage example.
Between each action, the LLM can also reason about which
further actions to include. See Figure 2 for an illustrative
example and Appendix C for a more complete one.

Action Construction
The Action Construction step is based on work by Guan et al.
(2023). In the same way as their work, we make the LLM
define a single action at a time by generating its arguments,
preconditions, and effects. To this end, the LLM also defines
new predicates dynamically for use in the current and sub-
sequent actions. The action is then validated automatically.
The validator checks various possible errors such as the use
of undefined predicates, unspecified types, and incorrectly
placed keywords. We give the full list of properties checked
in Appendix E. Only a single property is checked at a time
and a total of at most eight error messages are provided, after
which the flawed action is accepted. After each action has
been defined once, the process restarts and each action is gen-
erated a second time with the full list of generated predicates
available.

In contrast to previous work, we allow for non-STRIPS
actions, such as those that affect each object of a given type,
which enables NL2Plan to more easily deal with complex
domains. Additionally, we modify the used prompts to be
CoT-based and add the feedback substep after the validation
to allow for common-sense feedback in addition to syntac-
tical. Due to the previous NL2Plan steps, the user also does
not need to explicitly specify the actions and type hierarchy.
Lastly, we also finalize this process by pruning the gener-
ated types and predicates, keeping only those used in the
final iteration. See Figure 2 for an illustrative example and
Appendix C for a more complete one.

Task Extraction

In the final LLM-based step, we generate the PDDL problem
specification similarly to Liu et al. (2023) and Collins et al.
(2022). This includes the objects, the initial state, and the goal
condition. All of these are generated in a single call to the
LLM. Following the generation, the validator then automati-
cally generates feedback similarly to the Action Construction
step. It checks the objects first, then the initial state, and lastly
the goal condition. Once it encounters errors in one of these,
it suggests fixes to all errors for that section and the entire
solution is regenerated. At most 8 such validations can occur,
including both before and after receiving any feedback, after
which the output is accepted in the flawed state. The full list
of checked properties is found in Appendix E. Following
this, the feedback substep is performed. See Figure 2 for an
illustrative example and Appendix C for a more complete
one.

In contrast to existing methods, NL2Plan accepts natural,
unstructured descriptions of the initial state and goal condi-
tions. This is in contrast to previous work, which generated
the initial state and goal programmatically and presented it
in a structured manner while also using hand-crafted PDDL
domains. Moreover, our addition of CoT, syntax validation,
and automatic feedback are all novel in this context. Lastly,
NL2Plan is the first robust domain-agnostic system. While
Liu et al. (2023) also introduced a domain-independent zero-
shot version of LLM+P, it failed to solve any task.

Planning

Lastly, the planner solves the generated PDDL task. If it does
not find a plan, NL2Plan concludes that the modeled PDDL
task can not be solved and returns “No plan found”.



Experiments
We now describe our experiments for evaluating NL2Plan.

Baseline
Since NL2Plan is the first domain-independent natural lan-
guage planner, it is difficult to find a suitable baseline al-
gorithm. The LLM-driven reasoning techniques such as
CoT+SC (Wang et al. 2023), ToT (Yao et al. 2023a), and
Guided Decoding (Xie et al. 2023a) are developed primarily
for question-answering deduction (Huang and Chang 2023).
While Liu et al. (2023) introduced a version of ToT adapted
for planning, it uses in-domain examples, requires explicit
action specifications, and is outperformed by both zero-shot
and one-shot chain-of-thought methods. Similarly, RAP (Hao
et al. 2023) is a deduction method which was also used for
planning in the Blocksworld domain, but this required hand-
crafted domain-specific adaptations and examples. The proce-
dure introduced by Huang et al. (2022) is also an LLM-driven
method focused on planning, but uses both in-domain exam-
ples and embeddings of all possible grounded actions. The
methods using classical planners such as LLM+P (Liu et al.
2023) and L+P (Collins et al. 2022) instead require at least
the PDDL domain description as input. Therefore, we follow
the evaluation approach of other works (Stein et al. 2024; Liu
et al. 2023) and use zero-shot chain-of-thought reasoning as
a baseline.

Zero-shot chain-of-thought reasoning was introduced by
Kojima et al. (2022) and involves appending the statement
“Let’s think step by step” to the task, which triggers chain-
of-thought reasoning and improves model performance on
various tasks, similarly to the original few-shot chain-of-
thought implementation of Wei et al. (2022). The prompt we
use and an example response can be found in Appendix G.

Domains
We use four domains to evaluate NL2Plan:

• Blocksworld (Slaney and Thiébaux 2001) is an interna-
tional planning competition (IPC) domain where a robot
stacks blocks on a table. It can only lift a single block at a
time and only the topmost block of any stack.

• Tyreworld is another IPC domain. It models an agent
using tools to change tyres on cars.

• Household (Guan et al. 2023) is inspired by the ALF-
WORLD (Shridhar et al. 2021) and VirtualHome (Puig
et al. 2018) domains. It involves a single-armed robot op-
erating in a house with a wide array of available actions
and objects.

• Independent Set Reconfiguration (ISR) (Christen et al.
2023) is the task of transforming a given independent
subset of a graph to another such subset by swapping
nodes, while keeping each intermediary set independent.

We include ISR since the PDDL descriptions of
Blocksworld and Tyreworld as well as the one of the House-
hold inspiration ALFWORLD (VirtualHome is not defined
in PDDL) likely have been included in GPT-4’s training data
(OpenAI 2024), whereas the PDDL formulation of ISR prob-
ably is too recent and niche to have been included. A fifth

domain, Logistics (McDermott 2000), was the only one used
during the development of NL2Plan prompts. This was done
to evaluate other domains as unbiased and fairly as possible.

Experiment Setup
To avoid accidentally tailoring the domain descriptions to
our approach, we use domains from related works and only
remove information from the original natural language de-
scriptions. The descriptions for the Blocksworld, Tyreworld,
and Household domains are taken from Guan et al. (2023)
with the type definitions and explicit action specifications re-
moved. The description for ISR stems from the introduction
of the paper that introduced its PDDL formulation, Christen
et al. (2023). All domain descriptions can be found in Ap-
pendix A. For each domain, we generate three problems: one
easy task requiring at least four actions for a successful plan,
one medium task requiring eight, and one hard task requiring
twelve. For these, we manually describe both the initial state
and the goal criteria. We provide these problem formulations
in Appendix B.

For the classical planner, NL2Plan uses the first iteration
of LAMA (Richter and Westphal 2010), implemented within
Scorpion (Seipp, Keller, and Helmert 2020). Both NL2Plan
and the baseline CoT method use GPT-4 (OpenAI 2024) as
the underlying LLM.

To reduce LLM usage and cost, we only apply the entirety
of NL2Plan to the easy task within each domain. For the
medium and hard tasks, we instead re-use the domain de-
scription generated for the easy task, performing only the
Task Extraction and Planning steps. In the Tyreworld and
Household domains, however, the medium and hard tasks
require types, predicates, and actions not needed for the easy
task. Therefore, we manually add these without modifying
the existing domain description.

Additionally, to showcase how NL2Plan can be controlled
via prompting of the input task description we introduce a
variant of the ISR domain where we specifically request that
the “reconfiguration” action be modeled in two stages, alter-
nating between an “add” and a “remove” action, imitating
the domain model by Christen et al. (2023). We share the
modified domain description in Appendix A.

For the the Zero-Shot CoT baseline, we provide the LLM
with the domain and task descriptions, request a plan, and
append “Let’s think step by step”. We share the exact prompt
in Appendix G.

Results
Table 1 summarizes the performance of Zero-Shot CoT and
NL2Plan. The exact tasks and plans can be found in Ap-
pendix B and two examples of domain descriptions gener-
ated by NL2Plan are shown in Appendix F. Before discussing
the results, we reiterate that the NL2Plan prompts were de-
veloped using only a non-testing domain, Logistics, and a
different LLM version, GPT-4-1106-preview. This develop-
ment approach, combined with how we selected the domain
descriptions, makes the experiment representative for apply-
ing NL2Plan to new, unseen domains and tasks.



Zero-Shot CoT NL2Plan
B

lo
ck

sw
or

ld Easy
Med. Moves stack of blocks.
Hard Moves lower block.

Ty
re

w
or

ld Easy ∼ Loosens already loose nut.
Med.
Hard Fetches non-existent jack. Incorrectly specifies boot as open. Also domain flaw.

H
ou

se
ho

ld Easy ∼ Places mug on closed cabinet.
Med. Opens container inside fridge. Fails to use involved predicates. No plan found.
Hard Picks up non-pickupable pizza. Refers to previous iteration. No plan found.

IS
R

Easy Invalid node replacement.
Med. Invalid node replacement. Defined directed graph. Also domain flaw.
Hard Invalid node replacement. Defined directed graph. Also domain flaw.

IS
R

A
ss

is
te

d Easy Invalid node placement.
Med. Invalid node placement.
Hard Invalid node placement.

Table 1: Summary of the generated plans. Check marks denote successful plans, crosses denote failed plans, and ∼ denotes
questionable plans. In the latter two cases, we describe the flaw. For the exact tasks and plans, see Appendix B.

Zero-Shot CoT Results
Planning with Zero-Shot CoT only leads to a successful plan
for 2 out of 15 tasks, with another 2 plans being flawed. As
such, our results join a line of work showing that directly
applying LLMs to planning tasks leads to poor performance
(e.g., Valmeekam et al. 2023a; Stein et al. 2024; Valmeekam
et al. 2023b). The main failure reason appears to be invalid
domain modeling, with Zero-Shot CoT using actions that
violate the domain constraints. For example, lifting an entire
stack of blocks at once in Blocksworld or always replacing
the initial independent set sequentially in the ISR domains.
The same flaw is seen for the questionable plans, where it
chooses actions that contradict the domain-intent but which,
depending on the particular robot used, might be applicable.

NL2Plan Results
Plans NL2Plan shows much higher robustness than Zero-
Shot CoT. It successfully solves 10 of the 15 tasks, a superset
of those solved by Zero-Shot CoT (including those with ques-
tionable plans). The primary cause of failure for NL2Plan
is incorrect task modeling, for example, only defining the
ISR “neighbor” predicate in a one-directional manner. How-
ever, for the Tyreworld and ISR tasks NL2Plan would have
failed regardless due to flawed domain modeling. In Tyre-
world the domain model required a jack to lower a car, rather
than returning one upon doing so, and in the ISR domain a
node could incorrectly never be replaced by its neighbors.
These functionalities were not needed for the easy task which
the domains were created for, but were necessary for these
harder tasks. As such, even given a correct problem descrip-

tion NL2Plan would have returned “No plan found” for these.

Automatic Feedback The automatic feedback substep
used in NL2Plan varies in its usefulness. The first step,
Type Extraction, generates several invalid types for both the
Blocksworld and the ISR domains, including defining both
actions and predicates as types, and the feedback success-
fully leads to removing 88.2% of them. In contrast, during
the Hierarchy Construction and Action Extraction steps, the
initial solutions are always accepted as is or with ineffec-
tual feedback. During the Action Construction step, feedback
is returned for 52.8% of actions generated, though 21.1%
of said advice is incorrect and would worsen the action if
accepted. Lastly, in the Task Extraction step, feedback is
returned for 53.3% of the tasks, of which 25% is at least
partially harmful. The quality of this feedback could likely
be improved with superior prompting, but it is already a net
benefit leading to more sensible and correct solutions.

Automatic Validation The automatic validation is simi-
larly varied in usage. During Action Construction, such an
error occurred for 77.8% of actions, with the majority caused
by invalid predicate arguments. However, in the Task Extrac-
tion step errors were only raised for two tasks (13.3%), the
medium Tyreworld and the hard Household tasks, occurring
once and five times respectively. The most common error
was reusing type names for objects, followed by referring to
undefined objects. While the validation is not needed each
time Task Extraction is performed or an action is generated,
it is still valuable since each case when it is needed would
have otherwise led to malformed PDDL and parsing failures
during the Planning step.



NL2Plan

Zero-Shot CoT Step 1 Step 2 Step 3 Step 4 Step 5
Blocksworld 314 5669 2640 5261 50866 7409
Tyreworld 612 3475 3012 5549 88738 12315
Household 841 4424 4012 7089 160205 23334
ISR 647 5657 4638 8412 29793 11676
ISR Assisted 735 6160 4884 5411 30567 17443

Average 630 5077 3837 6344 72034 14435

Table 2: The token usage of both Zero-Shot CoT and
NL2Plan. Where applicable, the number of tokens is aver-
aged over all tasks and rounded to the nearest integer. Input
and output tokens are summed.

Domain Modeling
In our experiments, most of Zero-Shot CoT’s failures appear
to be caused by an inability to assess action preconditions.
Similar results were also found by Liu et al. (2023). However,
NL2Plan can use many of these actions correctly despite
utilizing the same LLM. We believe this to be caused by
GPT-4, the LLM used, being better at “reasoning” about the
actions when they are considered in isolation. This insight
could prove useful for future work, showing that using the
LLM to analyze actions separately ahead of planning can
increase plan quality through improved domain modeling.

Invalid Plans and Stochasticity
Whenever Zero-Shot CoT fails it always returns an invalid
plan. However, NL2Plan instead returns “No plan found” in
two of its five failure cases, and would have done so on all
of them given correctly generated problem descriptions. This
property of NL2Plan to identify its failures could be valuable
in cases where executing invalid plans is expensive. Addition-
ally, our early testing on the Logistics domain revealed that
NL2Plan is stochastic, generating different domain and task
descriptions for the same input even with the temperature of
the LLM set to zero. Similarly, the reasoning of Zero-Shot
CoT is stochastic, but the plan itself seems to remain static.
As such, in the event of NL2Plan failing to solve a task, it
could be automatically re-run, possibly generating a valid
plan the second time.

Token Usage
As shown in Table 2, the use of multiple steps, repeated
iterations, and long prompts in NL2Plan leads to a large
increase in token usage compared to Zero-Shot CoT. This
in turn entails increased cost, runtime, and energy usage.
Hence, Zero-Shot CoT using fewer tokens than NL2Plan is
an advantage. For NL2Plan this usage is dominated by the
Action Construction step (Step 4) which on average uses
70.8% of the tokens. As such, any improvements to the Ac-
tion Construction step would likely significantly reduce the
cost of NL2Plan. To further reduce token usage, the NL2Plan
pipeline could be started from the Task Extraction step when
solving a novel task from an already seen domain, re-using
the previous PDDL domain description, lowering token usage
and cost to approximately 14.2% of that for a new domain.

If no plan is found, the entire pipeline could then be run to
generate a domain description better adapted to the new task.

Explainability
The fact that NL2Plan generates intermediate PDDL do-
main descriptions and problem specifications means that the
method is more explainable than Zero-Shot CoT and similar
LLM-driven approaches. A user can read these descriptions
and understand why the method chose a certain plan, reduc-
ing the black-box nature of LLMs. Furthermore, any step
could be inspected and controlled further by allowing the
human user to be the feedback source rather than an LLM.
This would likely also lead to both superior domain models
and planning performance.

PDDL Creation Assistance
There are also other use cases of NL2Plan than direct plan-
ning. For example, practitioners could use it to easily synthe-
size PDDL descriptions, which they then manually edit to
their liking. While the descriptions might have flaws, such
as the inability to replace a node with its neighbors in the
ISR domains, a practitioner could simply fix these by hand.
This semi-automated approach has the potential to reduce the
workload of applying classical planners to new areas. This
is further illustrated by the ISR Assisted domain where the
“user” specified how the domain should be modeled. These in-
structions were followed by NL2Plan and led to both superior
plans and a domain model adapted to the user’s liking.

Concurrent Work
During our development of NL2Plan, Agarwal and Sreepathy
(2024) introduced TIC which is a novel approach for gener-
ating PDDL problem specifications, and as such performs
the same role as our Task Extraction step. TIC incrementally
generates a logical representation of the problem, solves it
with a logical reasoner and compiles the solution into PDDL.
While they use some manually added domain-specific rules,
TIC reaches high accuracy across seven planning domains
(including Blocksworld and Tyreworld).

Conclusions and Future Work
We presented NL2Plan, the first offline, domain-independent,
natural-language-to-plan system. It is a multi-step system
combining an LLM and a classical planner to robustly gener-
ate plans from only short natural language descriptions via
intermediate PDDL domain and task descriptions. Addition-
ally, we showed that NL2Plan outperforms planning directly
with LLMs via Zero-Shot CoT, while also increasing explain-
ability, identifying 40% of its failure cases, and being useful
as an assistive PDDL-creation tool.

In the future, we intend to build on NL2Plan. The current
version is purely LLM-driven and we want to include further
step-specific external tools, such as TIC. Additionally, we
aim to reduce the token usage of NL2Plan by more efficient
prompting and by solving several tasks from the same domain
in parallel, combining the first four NL2Plan steps and only
performing the Task Extraction step on a per-task basis.
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Appendix
A Domain Descriptions

Blocksworld

The AI agent here is a mechanical robot arm that can pick
and place the blocks. Only one block may be moved at a
time: it may either be placed on the table or placed atop
another block. Because of this, any blocks that are, at a
given time, under another block cannot be moved.

Tyreworld

The AI agent here is a robot that has to replace a flat tyre
with a spare one. This involves fetching the tools (wrench,
jack, pump) from the boot, undoing the nuts on the flat
tyre, jacking up the (appropriate) hub(s), removing the
tyre, doing up the spare one, etc. Note that there is no
restriction on how many objects the AI agent (i.e., the
robot) can carry. Also note that each hub has only one
nut.

Household

The AI agent here is a household robot that can navigate
to various large and normally immovable furniture pieces
or appliances in the house to carry out household tasks.
Note that the robot has only one gripper, so (a) it can only
hold one object; (b) it shouldn’t hold any other irrelevant
objects in its gripper while performing some manipulation
tasks (e.g., opening a drawer or closing a window); (c) op-
erations on small household items should be carried out
on furniture with a flat surface to get enough space for
manipulation. In this domain, the locations of the robot
and small household items (e.g., apples, oranges, bowls,
lunch boxes or lamps) are determined by large and nor-
mally immovable furniture pieces or appliances.

Independent Set Reconstruction (ISR)

An independent set of a graph is a subset of its vertices
such that no two vertices of the subset share an edge. Re-
configuring an independent set means replacing one vertex
in the subset with another one such that the new subset
is still an independent set. The ISR problem is to find a
sequence of such reconfiguration steps to reach a given tar-
get configuration from a given start configuration. Model
the reconfiguration with two actions, “remove” and “add”.
“remove” cannot be taken if the last action taken was a
“remove” action, and conversly “add” can only be taken
if the last action taken was a “remove”.

Figure A1: For Blocksworld, Tyreworld, and Household the domain descriptions are shortened versions of those from Guan et al.
(2023) and for ISR the description comes from the introduction of Christen et al. (2023). The blue section of the ISR description
is our addition, creating the ISR Assisted domain.



B Tasks and Generated Plans

Blocksworld Tasks

Simple - Original optimal plan is 4 actions

Task

There are four blocks currently. The blue
block is on the red which is on the yellow.
The yellow and the green are on the table.
I want the red on top of the green.

Zero-Shot CoT

- The AI robot arm should pick up the
blue block.
- The AI robot arm should place the blue
block on the table.
- The AI robot arm should then pick up
the red block.
- The AI robot arm should place the red
block on top of the green block.

NL2Plan

- pick block blue red
- place block on table blue table1
- pick block red yellow
- place block on block red green

Medium - Original optimal plan is 8 actions

Task

There are four blocks in two piles. The
first has blue on red and the second has
green on yellow. I want a single stack or-
dered: red, green, blue, yellow.

Zero-Shot CoT

- Move the blue block from the red block
and place it on the table.
- Move the green block from the yellow
block and place it on the table.
- Move the blue block and place it on the
green block.
- Move the yellow block and place it on
the blue block.
- Finally, move the stack of yellow on blue
on green and place it on the red block.

NL2Plan

- pick block blue red
- place block on table blue table1
- pick block green yellow
- place block on block green red
- pick block blue table1
- place block on block blue green
- pick block yellow table1
- place block on block yellow blue

Hard - Original optimal plan is 12 actions

Task

I’ve got five blocks of three colours and
want to stack them in a single pile such
that the red blocks are at the bottom, the
blue are on those and the green are on top.
Currently they’re in two stacks, (red, blue,
green) and (green, red) ordered from the
bottom up.

Zero-Shot CoT

- Move the top green block from the sec-
ond stack (green, red) and place it on the
table.
- Move the red block from the second stack
and place it on top of the red block in the
first stack (red, blue, green).
- Move the green block from the top of the
first stack (red, blue, green) and place it
on the table next to the other green block.
- Move the blue block from the top of the
first stack (red, red) and place it on the
table.
. . .

NL2Plan

- pick block green1 blue
- place block on table green1 table1
- pick block blue red1
- place block on block blue green1
- pick block red2 green2
- place block on block red2 red1
- pick block blue green1
- place block on block blue red2
- pick block green1 table1
- place block on block green1 blue
- pick block green2 table1
- place block on block green2 green1

Figure A2: The tasks and plans for the Blocksworld domain. Note that CoT action descriptions and NL2Plan names have been
shortened. Successful plans are marked in green. Failed plans and their first invalid action are marked in red. Questionable plans
that likely differ from user intent or similar are marked in orange.



Tyreworld Tasks

Simple - Original optimal plan is 4 actions

Task

The robot is already holding all the tools
and has a whole, but uninflated, wheel.
The flat tire is already loosened and
jacked up, but still left on the hub. Safely
replace the flat tire with the whole one
and prepare it.

Zero-Shot CoT

- Ensure that the vehicle is in a safe and
stable position.
- Use the wrench to fully loosen the nut
on the hub of the flat tire.
- Remove the flat tire from the hub.
- Place the new, uninflated tire onto the
hub.
- Use the wrench to tighten the nut onto
the hub.
- Use the pump to inflate the tire
- Lower the vehicle from the jack
- Finally, check the tightness of the nut
- Return the tools to the boot.
- Perform a final check to ensure the re-
placed tire is properly inflated and se-
curely attached

NL2Plan

- inflate spare tyre spare tyre1 pump1
- attach spare tyre wrench1 spare tyre1
hub1
- remove flat tyre flat tyre1 hub1 wrench1

Medium - Original optimal plan is 8 actions

Task

The robot currently only has a wrench,
but the other tools and a spare (already
inflated) tyre are in the open boot. The
back left wheel is flat, and still attached.
It should be safely replaced.

Zero-Shot CoT

- Identify the Tools and Spare Tyre
- Fetch the Jack, Pump and Spare Tyre
- Position the Jack
- Raise the Vehicle
- Loosen the Nut
- Remove the Flat Tyre
- Install the Spare Tyre
- Tighten the Nut
- Lower the Vehicle
- Check the Tyre Pressure
- Return the Tools and Old Tyre

NL2Plan

- collect my jack my boot
- lift car my hub my jack
- remove flat tyre my flat tyre my hub
my wrench
- collect my spare tyre my boot
- attach spare tyre my wrench
my spare tyre my hub

Hard - Original optimal plan is 12 actions

Task

The car is already in the process of hav-
ing wheels changed, so the front left hub
is raised with the jack and its wheel re-
moved. I want you to remove and replace
the back left tyre. You’ll find an unin-
flated tyre, the wrench and a pump in the
closed trunk.

Zero-Shot CoT

- Open the Trunk
- Retrieve the Wrench, Jack, Pump and
Spare Tyre
- Inflate the Spare Tyre
- Position the Jack
- Raise the Car
- Remove the Flat Tyre
- Install the Spare Tyre
- Lower the Car
- Tighten the Nut
- Fully Lower the Car
- Check the Tyre Pressure
- Return the Tools
- Final Check

NL2Plan

- collect wrench1 boot1
- collect spare tyre1 boot1
- collect pump1 boot1
- inflate spare tyre spare tyre1 pump1
- lift car hub back left jack1
- collect jack1 boot1
- attach spare tyre wrench1 spare tyre1
hub back left
- remove flat tyre flat tyre1 hub back left
wrench1
- lower car boot1 hub back left jack1

[NL2Plan failed as the generated PDDL
problem description specified that the
boot was already open. This was caused
by incorrect LLM-driven feedback. Fur-
thermore, the generated “lower car” ac-
tion requires and consumes a jack, making
the intended task impossible.]

Figure A3: The tasks and plans for the Tyreworld domain. Note that CoT action descriptions and NL2Plan names have been
shortened. Successful plans are marked in green. Failed plans and their first invalid action are marked in red. Questionable plans
that likely differ from user intent or similar are marked in orange. Note that we allow for tightening the nuts either on the ground
or while jacked up, since both are generally recommended.



Household Tasks

Simple - Original optimal plan is 4 actions

Task

Please toggle lamp 1 on and humidifier 1
off starting from the following state:

• cabinet 1 is not opened
• lamp 1 in/on side table 1
• lamp 1 is turned off
• humidifier 1 in/on side table 1
• humidifier 1 is turned on
• robot at cabinet 1
• robot is holding mug 1

[Unnecessary state information omitted]

Zero-Shot CoT

- Place mug 1 on cabinet 1.
- Navigate to side table 1.
- Toggle lamp 1 on.
- Toggle humidifier 1 off.
- Await further tasks.

NL2Plan

- navigate robot1 cabinet1 side table1
- put down robot1 mug1 side table1
- turn off robot1 humidifier1 side table1
- turn on robot1 lamp1 side table1

Medium - Original optimal plan is 8 actions

Task

Your task is to transfer potato 1 from a
lunch box to plate 1 and close the fridge
after yourself.
This is the current state:

• fridge 1 is opened
• lunch box 2 in/on fridge 1
• plate 1 in/on dining table 1
• lunch box 2 is not opened
• potato 1 in/on lunch box 2
• potato 1 is not sliced
• robot at cabinet 2
• robot is not holding anything

[Unnecessary state information omitted]

Zero-Shot CoT

- Navigate from cabinet 2 to fridge 1.
- Once at fridge 1, the robot should open
lunch box 2.
- After opening lunch box 2, the robot
should pick up potato 1.
- With potato 1 in its gripper, the robot
should navigate from fridge 1 to din-
ing table 1.
- Once at dining table 1, the robot should
place potato 1 on plate 1.
- After placing potato 1 on plate 1, the
robot should navigate back to fridge 1.
- Once at fridge 1, the robot should close
fridge 1.

NL2Plan

[No plan found.]

[NL2Plan failed as the generated PDDL
problem failed to use the “can be opened”
predicate in conjunction with “closed”
and “open” predicates. Additionally, it
modeled “plate 1” as a “small object” in-
stead of as a “container” and did not spec-
ify the table as a “flat surface”.]

Hard - Original optimal plan is 12 actions

Task

I want you to heat pizza 1 with pan 2.
The following are the current objects and
their state:

• drawer 1 is opened
• cabinet 2 is not opened
• pan 1 in/on stove burner 1
• pan 2 in/on dining table 1
• pizza box 1 in/on cabinet 2
• pizza box 1 is not opened
• pizza 1 in/on pizza box 1
• pizza 1 is not pickupable
• robot at drawer 1
• robot is holding mug 1

[Unnecessary state information omitted]

Zero-Shot CoT

- Navigate to a flat surface, such as din-
ing table 1, and place mug 1 on it.
- Navigate to cabinet 2 where pizza box 1
is located.
- Open pizza box 1 to access pizza 1.
- Pick up pizza 1 from the pizza box 1.
- Navigate to dining table 1 where pan 2
is located.
- Place pizza 1 in pan 2.
- Pick up pan 2 with pizza 1 in it.
- Navigate to the stove and place pan 2 on
stove burner 1.
- Turn on the stove to heat the pizza.
- After a suitable amount of time, the
robot should turn off the stove.
- Pick up pan 2 from the stove.
- Navigate back to dining table 1 and
place pan 2 with the heated pizza on it.
- The task is now complete. The robot
should wait for the next command.

NL2Plan

[No plan found.]

[NL2Plan failed as the Type Extraction
step referred to previous solutions while
correcting for feedback with statements
such as ‘The state of the furniture, the lo-
cation of the small items, and the state of
the switchable items remain the same.“.
Due to this, large amounts of the initia-
tion were discarded.]

Figure A4: The tasks and plans for the Household domain. Note that CoT action descriptions and NL2Plan names have been
shortened. Successful plans are marked in green. Failed plans and their first invalid action are marked in red. Questionable plans
that likely differ from user intent or similar are marked in orange.



ISR Tasks

Simple - Original optimal plan is 4 actions

Task

The current graph has the following neigh-
bors: - (1,2)
- (2,3)
- (3,4)
- (4,5)
- (5,6)
- (6,7)
- (7,8)
- (7,9)
- (9,5)
And the initial independent set is (4,6,9).
Transform it to (3,5,7)

Zero-Shot CoT

- Replace 4 with 3 to get (3,6,9)
- Replace 6 with 5 to get (3,5,9)
- Replace 9 with 7 to get (3,5,7)

NL2Plan

- add vertex to set vertex1 vertex4
- add vertex to set vertex3 vertex1
- add vertex to set vertex1 vertex6
- add vertex to set vertex5 vertex1
- add vertex to set vertex1 vertex8
- add vertex to set vertex7 vertex1

Medium - Original optimal plan is 8 actions

Task

So, I want to go from the set
(C,E,G,K,M,O,Q) to (D,F,H,J,L,N,P) in
a graph with the following neighbors:
- (A,B)
- (B,C)
- (C,D)
. . .

Zero-Shot CoT - 14 Actions

- Replace C with D.
- Replace E with F.
- Replace G with H.
- Replace K with J.
- Replace M with L.
- Replace O with N.
- Finally, replace Q with P.

NL2Plan

- add vertex to set vertexh vertexc
- add vertex to set vertexb vertexk
- add vertex to set vertexj vertexb
- add vertex to set vertexb vertexg
. . .

[NL2Plan failed as the problem specifica-
tion only used the “neighbors” predicate
one way, which the generated domain did
not support. Had the problem been cor-
rect, it would have failed with “No plan
found” due to the domain model not al-
lowing replacement with neighbors.]

Hard - Original optimal plan is 12 actions

Task

The graph has the following neighbors:
(A, E)
(B, C)
(B, F)
. . .

And I’m starting with the
set (A,C,F,H,L,N,P,R,S,T,V)
and want to end with the set
(B,D,E,I,K,M,O,Q,U,X,Z).

Zero-Shot CoT - 8.5 Actions

- Replace vertex A with vertex B.
- Replace vertex C with vertex D.
- Replace vertex F with vertex E.
- Replace vertex H with vertex I.
- Replace vertex L with vertex K.
- Replace vertex N with vertex M.
- Replace vertex P with vertex O.
- Replace vertex R with vertex Q.
- Replace vertex S with vertex U.
- Replace vertex T with vertex X.
- Finally, replace vertex V with vertex Z.

NL2Plan

- add vertex to set x a
- add vertex to set d c
- add vertex to set z x
- add vertex to set x d
. . .

[NL2Plan failed as the problem specifica-
tion only used the “neighbors” predicate
one way, which the generated domain did
not support. Had the problem been cor-
rect, it would have failed with “No plan
found” due to the domain model not al-
lowing replacement with neighbors.]

Task Graphs

Simple

6

/ \

1-2-3-4-5 7-8

\ /

9

Medium

A--B--C--D--E-

/ \

/ \

F--G--H--I--J--K--L

| | | | |

M--N-----O-----P--Q

Hard

A B--C--D

| | |

E F G

| | |

H--I--J--K--L

| | | |

M--N--O--P--Q

| | |

R S T

| | |

U--V--W X--Y--Z

Figure A5: The tasks and plans for the ISR domain. Note that CoT action descriptions and NL2Plan names have been shortened.
Successful plans are marked in green. Failed plans and their first invalid action are marked in red. Questionable plans that
likely differ from user intent or similar are marked in orange. Note that the “add vertex to set” action is implemented as a
“reconfigure set” action, adding the first argument to the set and removing the second.



ISR Assisted Tasks

Simple - Original optimal plan is 4 actions

Task

The current graph has the following neigh-
bors: - (1,2)
- (2,3)
- (3,4)
- (4,5)
- (5,6)
- (6,7)
- (7,8)
- (7,9)
- (9,5)
And the initial independent set is (4,6,9).
Transform it to (3,5,7)

Zero-Shot CoT

- Remove vertex 4 from the set.
- Add vertex 3 to the set.
- Remove vertex 9 from the set.
- Add vertex 5 to the set.
- Remove vertex 6 from the set.
- Add vertex 7 to the set.

NL2Plan

- remove vertex vertex4
- add vertex vertex3
- remove vertex vertex6
- add vertex vertex1
- remove vertex vertex9
- add vertex vertex7
- remove vertex vertex3
- add vertex vertex5
- remove vertex vertex1
- add vertex vertex3

Medium - Original optimal plan is 8 actions

Task

So, I want to go from the set
(C,E,G,K,M,O,Q) to (D,F,H,J,L,N,P) in
a graph with the following neighbors:
- (A,B)
- (B,C)
- (C,D)
- (C,H)
- (C,J)
- (D,E)
- (F,G)
- (F,M)
- (G,H)
- (G,N)
. . .

Zero-Shot CoT

- Remove vertex C.
- Add vertex D.
- Remove vertex E.
- Add vertex F.
- Remove vertex G.
- Add vertex H.
- Remove vertex K.
- Add vertex J.
- Remove vertex M.
- Add vertex L.
- Remove vertex O.
- Add vertex N.
- Remove vertex Q.
- Add vertex P.

NL2Plan

- remove vertex vertexe
- add vertex vertexa
- remove vertex vertexc
- add vertex vertexd
- remove vertex vertexg
- add vertex vertexh
- remove vertex vertexm
- add vertex vertexf
- remove vertex vertexo
- add vertex vertexn
- remove vertex vertexk
- add vertex vertexj
- remove vertex vertexq
- add vertex vertexl
- remove vertex vertexd
- add vertex vertexp
- remove vertex vertexa
- add vertex vertexd

Difficult - Original optimal plan is 12 actions

Task

The graph has the following neighbors:
(A, E)
(B, C)
(B, F)
(C, D)
(D, G)
(E, H)
(F, J)
(G, L)
(H, I)
(H, M)
(I, J)
(I, N)
(J, K)
(K, L)
(K, P)
(L, Q)
(M, N)
(M, R)
(N, O)
. . .

And I’m starting with the
set (A,C,F,H,L,N,P,R,S,T,V)
and want to end with the set
(B,D,E,I,K,M,O,Q,U,X,Z).

Zero-Shot CoT

- Remove vertex ’A’.
- Add vertex ’B’.
- Remove vertex ’C’.
- Add vertex ’D’.
- Remove vertex ’F’.
- Add vertex ’E’.
- Remove vertex ’H’.
- Add vertex ’I’.
- Remove vertex ’L’.
- Add vertex ’K’.
- Remove vertex ’N’.
- Add vertex ’M’.
- Remove vertex ’P’.
- Add vertex ’O’.
- Remove vertex ’R’.
- Add vertex ’Q’.
- Remove vertex ’S’.
- Add vertex ’U’.
- Remove vertex ’T’.
- Add vertex ’X’.
- Remove vertex ’V’.
- Add vertex ’Z’.

NL2Plan

- remove vertex a
- add vertex z
- remove vertex c
- add vertex d
- remove vertex f
- add vertex b
- remove vertex t
- add vertex x
- remove vertex h
- add vertex e
- remove vertex b
- add vertex j
- remove vertex l
- add vertex b
- remove vertex p
- add vertex q
- remove vertex j
- add vertex k
- remove vertex n
- add vertex i
- remove vertex s
- add vertex o
- remove vertex r
- add vertex m
- remove vertex v
- add vertex u

Task Graphs

Simple

6

/ \

1-2-3-4-5 7-8

\ /

9

Medium

A--B--C--D--E-

/ \

/ \

F--G--H--I--J--K--L

| | | | |

M--N-----O-----P--Q

Hard

A B--C--D

| | |

E F G

| | |

H--I--J--K--L

| | | |

M--N--O--P--Q

| | |

R S T

| | |

U--V--W X--Y--Z

Figure A6: The tasks and plans for the ISR Assisted domain. Note that CoT action descriptions and NL2Plan names have been
shortened. Successful plans are marked in green. Failed plans and their first invalid action are marked in red. Questionable plans
that likely differ from user intent or similar are marked in orange.



C NL2Plan Step Prompt Schemas and Examples

1: Type Extraction

# Role
Your task is to identify the different types of objects which exist and are relevant in a domain. [Further task details.]

# Example
[Chain-of-Thought Example]

# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages within the locations in a city through a truck and
between cities through an airplane. In a city, all the locations are connected. Similarly, cities are directly connected allowing airplanes
to travel between them. Also, there is no limit to how many packages a truck or plane can carry.

Currently, I’ve got four packages to ship. . .

## Types
First, we need types related to locations and transportation.
‘‘‘
- city: Each city contains an airport and other locations.
- location: Places within cities trucks can visit.
- airport: A location where planes land and take off.
‘‘‘

Next, we consider the transportation vehicles.
‘‘‘
- plane: A type of vehicle used for transporting packages between cities.
- truck: A type of vehicle used for transporting packages within a city.
‘‘‘

Lastly, we need the to define the items being transported.
‘‘‘
- package: An item that needs to be transported from one location to another.
‘‘‘

Figure A7: An example of an input and a solution from the Type Extraction step. Note that parts have been omitted for brevity.



1: Type Extraction

# Role
Your task is to identify the different types of objects which exist and are relevant in a domain. [Further task details.]

# Example
[Chain-of-Thought Example]

# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages within the locations in a city through a truck and
between cities through an airplane. In a city, all the locations are connected. Similarly, cities are directly connected allowing airplanes
to travel between them. Also, there is no limit to how many packages a truck or plane can carry.

Currently, I’ve got four packages to ship. . .

## Types
First, we need types related to locations and transportation.
‘‘‘
- city: Each city contains an airport and other locations.
- location: Places within cities trucks can visit.
- airport: A location where planes land and take off.
‘‘‘

Next, we consider the transportation vehicles.
‘‘‘
- plane: A type of vehicle used for transporting packages between cities.
- truck: A type of vehicle used for transporting packages within a city.
‘‘‘

Lastly, we need the to define the items being transported.
‘‘‘
- package: An item that needs to be transported from one location to another.
‘‘‘

Figure A8: An example of an input and a solution from the Type Hierarchy step. Note that parts have been omitted for brevity.



3: Action Extraction

# Role
Your task is to identify what actions an AI Agent would have available in a domain. [Further task details.]

# Example
[Chain-of-Thought Example]

# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .

Currently, I’ve got four packages to ship. . .

##Types:
- object: Everything is an object

- city: Each city contains. . .
- location: Places within cities. . .
- airport: A location where planes. . .

- vehicle: Vehicles transport packages.
- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .

- package: An item that needs to. . .

##Actions
###Package related actions
Packages need to be loaded onto vehicles and unloaded at the destination.
‘‘‘
load package

A package is loaded onto a vehicle at a location. Requires that the package and the truck to be at the same location. Example:
package 1 is loaded onto truck 1 at location 1.
‘‘‘

‘‘‘
unload package

A package is unloaded from a vehicle at a location. Requires the package to be on the vehicle and the vehicle to be at the destination
location. Example: package 2 is unloaded from plane 1 at airport 1.
‘‘‘

[Further headers and actions.]

Figure A9: An example of an input and a solution from the Type Extraction step. Note that parts have been omitted for brevity.



4: Action Construction

# Role
You are defining the preconditions and effects (represented in PDDL format) of an AI agent’s actions. [Further task details.]

# Example
[Chain-of-Thought Example]

# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .

Currently, I’ve got four packages to ship. . .

##Types:
- object: Everything is an object

- city: Each city contains. . .
- location: Places within cities. . .

- airport: A location where planes. . .
- vehicle: Vehicles transport packages.

- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .

- package: An item that needs to. . .

## Future actions
The following actions will be defined later and together they make up the entire domain:
- load package: A package is loaded. . .
- unload package: A package is unloaded. . .
[Remaining actions.]

## Action
load package

A package is loaded onto a vehicle at a location. Requires that the package and the truck to be at the same location. Example:
package 1 is loaded onto truck 1 at location 1.

### Available Predicates
No predicate has been defined yet.

### Action Parameters
First, we need to know which vehicle and package are being loaded:
‘‘‘
- ?v - vehicle: The vehicle being loaded.
- ?p - package: The package being loaded.
‘‘‘

Lastly, we need to know where the loading is taking place:
‘‘‘
- ?l - location: The location where the loading happens.
‘‘‘

### Action Preconditions
To be able to load at ?l it’s specified that:
1: The vehicle is at the location.
2: The package is at the location.

For this we need a predicate:
- “at” to define where something is. This should work for both packages and vehicles, so let’s define “(at ?o - object ?l - location)”

Let’s specify this in PDDL:
‘‘‘
(and ; All these have to hold

(at ?v ?l) ; The vehicle is at the location
(at ?p ?l) ; The package is at the location

)
‘‘‘

### Action Effects
So, what happens when the action is performed?
- The package is no longer at the location
- The package is instead inside the vehicle

For this, we need a new predicate
- “loaded” to specify when and where a package is loaded. “(loaded ?p - package ?v - vehicle)”

Specifying this in PDDL we get:
‘‘‘
(and ; All these have to hold

(not (at ?p ?l)) ; The package is not at the location
(loaded ?p ?v) ; The package is instead loaded in the vehicle

)
‘‘‘

### New Predicates
We used two new predicates. Those have to be specified and re-iterated:
‘‘‘
- (at ?o - object ?l - location): true if the object ?o (a vehicle or package) is at the location ?l
- (loaded ?p - package ?v - vehicle): true if the package ?p is loaded in the vehicle ?v
‘‘‘

Figure A10: An example of an input and a solution from the Action Construction step. Note that parts have been omitted for
brevity.



5: Task Extraction

# Role
Your task is to estimate the initial state and the goal state for a PDDL problem based on a domain description and the available
actions. [Further task details.]

# Example
[Chain-of-Thought Example]

# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .

Currently, I’ve got four packages to ship. Two are in a London storage and the rest in Paris. Those from London should be
sent to Addr1 in Berlin and to Addr2 in Paris. Those from Paris should both be moved to the London storage.

##Types:
- object: Everything is an object

- city: Each city contains. . .
- location: Places within cities. . .

- airport: A location where planes. . .
- vehicle: Vehicles transport packages.

- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .

- package: An item that needs to. . .

## Predicates
- (at ?o - object ?l - location): true if the object ?o (a vehicle or package) is at the location ?l
- (loaded ?p - package ?v - vehicle): true if the package ?p is loaded in the vehicle ?v
[Further predicates.]

## Object Instances
There are four packages. The first two start in London, and the remaining two start in Paris:
‘‘‘
- L1 - package: The first London package
- L2 - package: The second London package
- P1 - package: The first Paris package
- P2 - package: The second Paris package
‘‘‘

[Further object instances.]

## State
The London packages all start in the London storage:
‘‘‘
(at L1 LStorage): The first London package location
(at L2 LStorage): The second London package location
‘‘‘

[Further initial predicates.]

## Goal
The goal is for L1 to go to Addr1 and for L2 to be delivered to Addr2, as well as for both P1 and P2 to be transported to London
storage. Here’s how we can define the goal:
‘‘‘
(and ; All these have to hold

(at L1 Addr1)) ; L1 is delivered
(at L2 Addr2)) ; L1 is delivered
(at P1 LStorage)) ; L1 is delivered
(at P2 LStorage)) ; L1 is delivered

)
‘‘‘

Figure A11: An example of an input and a solution from the Task Extraction step. Note that parts have been omitted for brevity.



D Feedback Checklists

Feedback Checklists

1: Type Extraction

1. Are there additional types which are
needed to model the domain?

2. Are additional types needed for organ-
ising the type hierarchy?

3. Are any of the types actually objects?

4. Are any of the types actually actionc?

5. Are any of the types actually proper-
ties?

6. Is the acting agent itself or the resulting
plans included?

7. Will any of the included types only ever
be used once?

8. Do any of the types fit better as goals,
initial states or predicates?

2: Hierarchy Construction

1. Is any child not a sub-
type of its parent?

2. Is any subtype not
a child of its parent
type?

3. Are any new types
needed for organisa-
tion?

3: Action Extraction

1. Are there additional
actions needed for
this domain?

2. Should any of the ac-
tions be split or com-
bined?

3. Should any of the ac-
tions be removed?

4. Should any precondi-
tions be changed?

5. Should any effects be
changed?

6. Should any action ex-
amples be modified?

4: Action Construction

1. Are any necessary precondition checks
missing?

2. Are any unnecessary preconditions
checked?

3. Are any necessary effects missing?

4. Are any unnecessary effects included?

5. Can the used predicates be improved?

6. Should any predicate be used in a sym-
metrical manner?

5: Task Extraction

1. Are any necessary objects missing?

2. Are any unnecessary objects included?

3. Are any objects defined with the wrong type?

4. Are any unnecessary or incorrect predicates declared?

5. Are any necessary predicates missing from the initial
state?

6. Is anything missing from the goal description?

7. Is anything unnecessary included in the goal description?

8. Should any predicate be used in a symmetrical manner?

Figure A12: The checklists used for the automatic LLM-driven feedback substeps in NL2Plan. Each feedback prompt includes at
least one example of failure for each point on the checklist.



E Automatic Validation

Automatically Validated Properties

Action Construction

• header inclusion: Checks that each expected
header is included.

• keyword usage: Checks if one of “forall”, “ex-
ists”, or “if” are used in the action effects.

• param types: Checks if all action parameters
use defined types.

• predicate names: Checks if the names of new
predicates are duplicates of types or existing
predicates. If the new predicate shares argu-
ments with the existing predicate, such as re-
iterating a predicate, this does not raise an er-
ror.

• predicate format: Checks that all predicate
arguments are correctly specified and typed.

• predicate usage: Checks that the predicates
are used correctly. Confirms that the number of
parameters is correct, that all used arguments
are defined, and that all argument types are
valid.

Task Extraction

Object list properties:

• obj type: Checks if any objects use undefined
types.

• obj type name: Checks if any object name is
a type.

• obj pred name: Checks if any object name is
a predicate.

Initial state and goal description properties:

• pred exists: Checks if any used predicate is un-
defined.

• pred nargs: Checks that the number of pre-
dicted arguments are correct.

• pred objs: Checks that all predicate argument
objects exist.

• pred types: Checs that all predicate argument
types are valid.

Figure A13: The properties checked by the automatic validation. Note that “not” can currently be used in the Task Extraction for
the goal description, but not for the initial state.



F NL2Plan Generated Domains

Blocksworld PDDL

(define (domain blockswor ld )
( :requirements

: s tr ips :typing :equality :negative−preconditions :disjunctive−preconditions
:universal−preconditions :conditional−effects

)

( :types
l o c a t i o n − ob j e c t ; A type o f o b j e c t where b l o c k s can be p laced .
block − l o c a t i o n ; the b l o c k s are the main o b j e c t s t ha t the robo t arm i n t e r a c t s wi th . they can be moved . . .
t ab l e − l o c a t i o n ; the t a b l e i s the su r f a c e on which the b l o c k s are p laced . i t i s a l o c a t i o n . . .

)

( :predicates
( on ?b1 − block ? l − l o c a t i o n )
( ho ld ing ?b − block )

)

( :action p i ck b l o ck
:parameters (

?b − block
? l − l o c a t i o n

)
:precondition

(and ; A l l t h e s e have to ho ld
(not ( exists (? b2 − block ) ( ho ld ing ?b2 ) ) ) ; The robo t arm i s not ho l d ing any b l o c k
(not ( exists (? b2 − block ) ( on ?b2 ?b ) ) ) ; The b l o c k to be p icked up i s not under any o ther b l o c k
( on ?b ? l ) ; The b l o c k to be p icked up i s on the l o c a t i o n ? l

)
: e f f e c t

(and
( ho ld ing ?b) ; The robo t arm i s now ho ld ing the b l o c k
(not ( on ?b ? l ) ) ; The b l o c k i s no l onger on i t s p rev ious l o c a t i o n

)
)

( :action p l a c e b l o c k on t ab l e
:parameters (

?b − block
? t − t ab l e

)
:precondition

(and ; A l l t h e s e have to ho ld
( ho ld ing ?b) ; The robo t arm i s ho l d ing the b l o c k

)
: e f f e c t

(and
(not ( ho ld ing ?b ) ) ; The robo t arm i s no longer ho l d ing the b l o c k
( on ?b ? t ) ; The b l o c k i s now on the t a b l e

)
)

( :action p l a c e b l o ck on b l o ck
:parameters (

?b1 − block
?b2 − block

)
:precondition

(and ; A l l t h e s e have to ho ld
( ho ld ing ?b1 ) ; The robo t arm i s ho l d ing ?b1
(not ( exists (? b3 − block ) ( on ?b3 ?b2 ) ) ) ; There i s no b l o c k on ?b2
(not (= ?b1 ?b2 ) ) ; The b l o c k s are d i f f e r e n t

)
: e f f e c t

(and
(not ( ho ld ing ?b1 ) ) ; The robo t arm i s no longer ho l d ing ?b1
( on ?b1 ?b2 ) ; ?b1 i s now on ?b2

)
)

)

Figure A14: The Blocksworld domain description generated by NL2Plan. The requirement list is fixed and covers all requirements
NL2Plan has ever required.



ISR PDDL

(define (domain i s r )
( :requirements

: s tr ips :typing :equality :negative−preconditions :disjunctive−preconditions
:universal−preconditions :conditional−effects

)

( :types
graph component − ob j e c t ; A type o f o b j e c t c on s i s t i n g o f components o f a graph .
ver tex − graph component ; a po in t in the graph . can be par t o f an independent s e t .

)

( :predicates
( i n s e t ?v − ver tex ) ; t rue i f the v e r t e x ?v i s in the independent s e t
( ne ighbors ?v1 − ver tex ?v2 − ver tex ) ; t rue i f the v e r t i c e s ?v1 and ?v2 share an edge

)

( :action add v e r t e x t o s e t
:parameters (

?v − ver tex
?v remove − ver tex

)
:precondition

(and
(not ( i n s e t ?v ) ) ; The v e r t e x i s not in the s e t
( i n s e t ? v remove ) ; The v e r t e x to remove i s in the s e t
(not ( ne ighbors ?v ?v remove ) ) ; The v e r t i c e s are not ne i ghbor s
( f o ra l l (?n − ver tex ) ; For a l l v e r t i c e s

(or ; E i ther
(not ( ne ighbors ?v ?n ) ) ; The v e r t e x i s not a ne ighbor
(not ( i n s e t ?n ) ) ; Or the ne ighbor i s not in the s e t

)
)

)
: e f f e c t

(and
( i n s e t ?v ) ; ?v i s now in the s e t
(not ( i n s e t ? v remove ) ) ; ? v remove i s no longer in the s e t

)
)

( :action r emove ver t ex f rom se t
:parameters (

?v − ver tex
)
:precondition

( i n s e t ?v ) ; The v e r t e x i s in the independent s e t
: e f f e c t

(not ( i n s e t ?v ) ) ; The v e r t e x i s no l onger in the independent s e t
)

)

Figure A15: The ISR domain description generated by NL2Plan. The requirement list is fixed and covers all requirements
NL2Plan has ever required. Notably, the Action Construction step implemented the “add vertex to set” as a “reconfigure set”
action. Furthermore, this action both explicitly and implicitly (via the “forall” statement) disallows replacing a node with its
neighbor. Allowing neighbor-replacement (and optionally removing “remove vertex from set”) would result in an entirely
correct PDDL description of ISR.



G Zero-Shot Chain-of-Thought Prompt Schemas and Examples

1: Type Extraction

Your job is to provide me with a plan that would solve the following task. Specify each action you wish to take clearly.

The task:
The AI agent here is a mechanical robot arm that can pick and place the blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block. Because of this, any blocks that are, at a given time, under another block
cannot be moved.

There are four blocks currently. The blue block is on the red which is on the yellow. The yellow and the green are on the
table. I want the red on top of the green.

Let’s think step by step.

Step 1: The AI robot arm should pick up the blue block which is on top of the red block.

Step 2: The AI robot arm should place the blue block on the table.

Step 3: The AI robot arm should then pick up the red block which is on top of the yellow block.

Step 4: The AI robot arm should place the red block on top of the green block which is on the table.

Now, the red block is on top of the green block as required.

Figure A16: The Zero-Shot Chain-of-Thought prompt schema and an example for the easy Blocksworld task. The section in blue
is replaced by the current domain and task descriptions from Appendix A and Appendix B, respectively.


