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Abstract

Goal instructions for autonomous AI agents cannot assume
that objects have unique names. Instead, objects in goals must
be referred to by providing suitable descriptions. However,
this raises problems in both classical planning and general-
ized planning. The standard approach to handling existen-
tially quantified goals in classical planning involves compil-
ing them into a DNF formula that encodes all possible vari-
able bindings and adding dummy actions to map each DNF
term into the new, dummy goal. This preprocessing is expo-
nential in the number of variables. In generalized planning,
the problem is different: even if general policies can deal with
any initial situation and goal, executing a general policy re-
quires the goal to be grounded to define a value for the policy
features. The problem of grounding goals, namely finding the
objects to bind the goal variables, is subtle: it is a generaliza-
tion of classical planning, which is a special case when there
are no goal variables to bind, and constraint reasoning, which
is a special case when there are no actions. In this work, we
address the goal grounding problem with a novel supervised
learning approach. A GNN architecture, trained to predict the
cost of partially quantified goals over small domain instances
is tested on larger instances involving more objects and differ-
ent quantified goals. The proposed architecture is evaluated
experimentally over several planning domains where general-
ization is tested along several dimensions including the num-
ber of goal variables and objects that can bind such variables.
The scope of the approach is also discussed in light of the
known relationship between GNNs and C2 logics.

1 Introduction
In classical planning, the usual assumption is that objects
have unique names, and goals are described using these
names. For instance, a goal might be to place block A on
top of block B, where A and B are specific blocks. A similar
assumption is made in generalized planning, where a policy
is sought to handle reactively any instances within a given
domain. To apply the general plan to a particular domain
instance, it is assumed that the goal consists of a conjunc-
tion of grounded atoms, with objects referred to by unique
names.

However, instructions for goals in autonomous AI agents
cannot assume that objects have individual, known names.
Instead, goals must be expressed by referring to objects us-
ing suitable descriptions. For instance, the instruction to

place the large, yellow ball next to the blue package or to
construct a tower of 6 blocks, alternating between blue and
red blocks, does not specify the objects uniquely, and it’s
indeed part of the problem to select the right objects.

To address goals in classical planning that do not in-
clude unique object names, existentially quantified goals are
used (Pednault 1989; Gazen and Knoblock 1997; Haslum et
al. 2019). For example, the goal of placing the large, yel-
low ball next to the blue package can be expressed with the
following formula:

∃x, y :
[
BALL(x) ∧ LARGE(x) ∧ YELLOW(x)

∧ PACKAGE(y) ∧ BLUE(y) ∧ NEXT(x, y)
]
.

However, there are not many classical planners that sup-
port existentially quantified goals because dealing with such
goals is computationally hard, even when actions are absent.
Determining whether an existentially quantified goal is true
in a state is indeed NP-hard, as these goals can easily ex-
press constraint satisfaction problems (Francès and Geffner
2016). For example, consider a graph coloring problem over
a graph G = ⟨V,E⟩, where V represents vertices i ∈ V and
E represents edges (k, j) ∈ E. This problem can be ex-
pressed via the goal:

∃x1, . . . , xn :

[ ∧
i∈V

COLOR(i, xi)

]
∧

[ ∧
(k,j)∈E

NEQ(xk, xj)

]
.

This expression applies to an initial state with ground atoms
COLOR(i, x), where x is a possible color of vertex i, and
ground atoms NEQ(x, x′) express that x and x′ are distinct.

The standard approach to handling existentially quanti-
fied goals in classical planning involves eliminating them by
transforming them into a grounded DNF formula that en-
codes all possible variable bindings. This process also in-
volves adding dummy actions for each DNF term to map
them to a new, dummy goal (Gazen and Knoblock 1997).
However, this preprocessing step is exponential in the num-
ber of variables. For instance, in the graph coloring exam-
ple, it results in several terms and dummy actions that grow
exponentially with the number of vertices n.

The problem of grounding goals, which involves finding
objects to bind the goal variables, is subtle. It is a gener-
alization of standard classical planning where there are no
goal variables to bind, and it is a special case of constraint



reasoning, which is computationally hard even without con-
sidering actions. Conceptually, the interesting problems lie
between these two extremes, in the presence of multiple
possible bindings for the goal variables, each resulting in
a fully grounded goal with a ”cost” determined by the num-
ber of steps needed to reach it from the initial state. Opti-
mal bindings, or groundings, replace the goal variables with
constants to achieve grounded goals with minimum cost.
In action-less problems representing constraint satisfaction
problems, the cost of the bindings (i.e., the cost of the re-
sulting grounded goals) is either zero or infinity. In planning
problems with existentially quantified goals, the cost of the
possible groundings depends on the initial state, the actions,
and the structure of the goal, and can be any natural number
or infinity. For example, in the planning problem with the
initial and goal states shown in Figures 1(a) and 1(b) below,
the optimal grounding binds the two bottom blocks in the
goal to F and A, so that the first move places A on F.

In this work, we tackle the problem of grounding goals as
a generalized planning problem (Khardon 1999; Martı́n and
Geffner 2004; Fern, Yoon, and Givan 2006). Here, both the
training and test instances are assumed to contain partially
quantified goals; that is, a combination of grounded and ex-
istentially quantified variables. We use a graph neural net-
work (GNN) architecture, trained using supervised learning
to predict the cost V (P ) of partially quantified goals over
small domain instances P and test it on larger instances P ′

involving more objects and different goals. The bindings of
the goal variables are then obtained sequentially by greedily
grounding one variable at a time, without any search, neither
in the problem state space nor the space of goal bindings.
Once the variables in the goal of an instance P have been
grounded, existing methods can be used to obtain a plan for
the fully grounded problem P ′, using standard classical or
generalized planners that expect grounded goals.

The paper is organized as follows: we start by explaining
the learning task through an example, and then review clas-
sical planning, generalized planning, and existentially quan-
tified goals. Next, we describe the task, introduce our pro-
posed learning method, present the experimental results and
detailed analysis over an example.

2 Example: Visit-1
We begin with an example to illustrate our learning task,
estimating the cost of existentially quantified goals in plan-
ning, and why GNNs provide a handle on this problem given
the known correspondence between GNNs and C2, the frag-
ment of first-order logic with two variables and counting
(Barceló et al. 2020; Grohe 2021). Indeed, we show that
the general value (cost) function for the problem can be ex-
pressed in C2 and hence can be learned with GNNs.

The example is a variation of the Visitall domain where
a robot is placed on a grid and can move up, down, left, or
right. In the original domain, the goal is for the robot to
visit all the cells in the grid. Each cell is represented as a
single object, and two cells x and y are considered adjacent
if there is a CONNECTED(x, y) atom in the state. A cell x is
marked as visited with a VISITED(x) atom. The location of
the robot is given by AT-ROBOT(x), where x is a cell.

In our variation, cells have colors from a fixed set of colors
C and the goal is to visit a cell of a given color. The cost of
the problem is thus given by the distance to the closest cell of
that color. For reasons to be elaborated later, the distances
involved must be bounded with the set D representing the
distances up to such a bound. The goals have the form:

G = ∃x : C(x) ∧ VISITED(x),

where C is any of the colors in C. Later on, we will consider
a further variation of the problem where cells of different
colors are to be visited. The objective is to express the cost
function for this family of problems using Boolean features
definable in C2 so that the cost function can be learned with
GNNs.

The Boolean function SPd,C(x) determines the existence
of a shortest path of length d from x to a cell with color C:

P0,C(x) = C(x)

Pd,C(x) = ∃y : CONNECTED(x, y) ∧ Pd−1,C(y)

SPd,C(x) = Pd,C(x) ∧ ¬Pd−1,C(x)

If we let N stand for the max distance plus 1, the value
function V ∗ can then be expressed as:

GC = ∃v : CG(v)

Dd,C = GC ∧ ∃x : [AT-ROBOT(x) ∧ SPd,C(x)]

V ∗(s;G) = min
d∈D,C∈C

d · [[Dd,C]] +N · [[¬Dd,C]]

Here, s represents a state, and G denotes a goal. The nota-
tion [[·]] is the Iverson bracket, and CG refers to the colors
specified in G. When predicate names are used without sub-
scripts, they refer to s. If we assume that the state s does
not contain any VISITED atoms, then V ∗ calculates the dis-
tance to the nearest cell with the color C, provided such a
cell exists. If no such cell exists, the value is set to N .

We will learn V ∗ using GNNs. Since the expressiveness
of GNNs is limited by two-variable first-order logic C2, if
V ∗ cannot be expressed with C2 features, it will not be learn-
able by GNNs. Existentially quantified goals are thus han-
dled “by free” by GNNs as long as they do not get out of
these limits. Moreover, existentially quantified goals with
more than two variables are not necessarily a problem if they
are equivalent to formulas in C2. For example, the goal of
building a tower of five blocks is naturally written in terms
of five variables, yet the formula is equivalent to a formula
with two variables only that are quantified multiple times.

3 Related work
Quantification in planning. Since the middle nineties,
planners usually ground all actions and goals to improve ef-
ficiency. This does not rule out the use of existential and
universal quantification in action preconditions and effects,
and goals (Pednault 1989; Haslum et al. 2019). Universal
quantification can be replaced by conjunctions, while exis-
tential quantification by disjunctions (Gazen and Knoblock
1997). The problem with existential quantification in the
goal is that the number of resulting disjuncts is exponential
in the number of goal variables. In action preconditions, the



problem is less critical as the number of variables is bounded
by the arity of the action schemas.

Lifted planning. Modern, lifted planners aim to approx-
imate the performance of fully grounded planners with-
out having to ground actions or goals (Corrêa et al. 2020;
Ståhlberg 2023). The problem with non-grounded goals is
that they do not result in equally informed heuristics, and
approaches that aim to compute informed heuristics with-
out grounding the actions or goals carry a significant over-
head (Francès and Geffner 2016).

Generalized planning. The problem of learning poli-
cies for solving collections of problems involving different
number of objects and goals have been approached with
symbolic (Khardon 1999; Martı́n and Geffner 2004; Fern,
Yoon, and Givan 2006; Srivastava, Immerman, and Zil-
berstein 2011; Illanes and McIlraith 2019; Francès, Bonet,
and Geffner 2021) and deep learning methods (Toyer et
al. 2020; Bajpai, Garg, and others 2018; Rivlin, Hazan,
and Karpas 2020; Ståhlberg, Bonet, and Geffner 2022b;
Ståhlberg, Bonet, and Geffner 2023), yet in practically all
cases, goals are assumed to be fully grounded.

Grounding instructions in RL. In reinforcement learn-
ing, the problem of grounding instructions is the prob-
lem of understanding and carrying out the given instruc-
tions (Chevalier-Boisvert et al. 2019; Narasimhan, Barzilay,
and Jaakkola 2018; Ruis et al. 2020). The key difference
with generalized planning is that the structure of the states
and goals, both sets of ground atoms over a fixed set of pred-
icates in planning, are not assumed to be known in RL. In-
stead, if a state or trajectory is produced that complies with
instructions, a reward is obtained.

GNNs and Ck logics. There is a tight correspondence
among the classes of graphs that can be distinguished by
GNNs, the Weisfeiler-Leman algorithm (1-WL) (Morris et
al. 2019; Xu et al. 2019), and two-variable first-order logic
with counting quantifiers (C2) (Cai, Fürer, and Immerman
1992; Barceló et al. 2020; Grohe 2021). Briefly, this means
that C2 serves as an upper bound of expressivity for GNNs.

4 Background
We review classical planning, generalized planning, and ex-
istentially quantified goals.

4.1 Classical Planning
A classical planning problem is a pair P = ⟨D, I⟩ where
D is a first-order domain and I contains information about
the instance (Geffner and Bonet 2013; Ghallab, Nau, and
Traverso 2016; Haslum et al. 2019). The domain D has a set
of predicate symbols p and a set of action schemas with pre-
conditions and effects given by atoms p(x1, . . . , xk) where p
is a predicate symbol of arity k, and each xi is an argument
of the schema. An instance is a tuple I = ⟨O, Init,Goal⟩
where O is a set of object names ci, and Init and Goal are
sets of ground atoms p(c1, . . . , ck).

A problem P = ⟨D, I⟩ encodes a state model
S(P )= ⟨S, s0, SG,Act, A, f⟩ in compact form where

the states s ∈ S are sets of ground atoms, s0 is the
initial state I , SG is the set of goal states s such that
SG ⊆ s, Act is the set of ground actions, A(s) is the set
of ground actions whose preconditions are true in s, and
f is the induced transition function where s′ = f(a, s) is
the resulting state after applying a ∈ A(s) in state s. An
action sequence a0, . . . , an is applicable in P if ai ∈ A(si)
and si+1 = f(ai, si), for i=1, . . . , n, and it is a plan if
sn+1 ∈ SG.

The cost of a plan is assumed to be given by its length
and a plan is optimal if there is no shorter plan. The cost of
a goal G for a problem P is the cost of the optimal plan to
reach G from the initial state of P .

4.2 Generalized Planning
In generalized planning, one is interested in solutions to
collections Q of problems P over the same planning do-
main (Khardon 1999; Martı́n and Geffner 2004; Fern, Yoon,
and Givan 2006). For example, the class of problems Q
may include all Blocksworld instances where a given block
x must be cleared, or all instances of Blocksworld for any
(grounded) goal. A critical issue in generalized planning
is the representation of these general solutions or policies π
which must select one or more actions in the reachable states
s of the instances P ∈ Q. A common representation of these
policies is in terms of general value functions V (Francès
et al. 2019; Ståhlberg, Bonet, and Geffner 2022a) that map
states s into non-negative scalar values V (s). The general
policy πV greedy on V then selects the action a applicable
in s that result in successor state s′ with minimum V (s′)
value. If the value of the child s′ is always lower than the
value of its parent state s, the value function V represents a
general policy πV that is guaranteed to solve any problem in
the class Q.

In this formulation, it is assumed that the state s over a
problem P in Q also encodes the goal G of P given by a
set of ground atoms pG(c1, . . . , ck) for each ground goal
p(c1, . . . , ck) in P . The new goal predicate pG (Martı́n and
Geffner 2004) is used to indicate in the state s that the atom
p(c1, . . . , ck) is to be achieved from s and that it is not nec-
essarily true in s.

4.3 Existentially Quantified Goals
A classical planning problem with partially quantified goals
is a pair PX = ⟨D, IX⟩ where D is a first-order domain, X
is a set of variables, and IX=⟨O, Init,GX⟩ expresses the in-
stance information as before, with one difference: the atoms
p(t1, . . . , tk) in the goal GX can contain variables x from
X , which are assumed to be existentially quantified. That
is, in quantified problem PX , the terms ti can be either
constants ci from O referring to the objects or variables x
from X . The variables x in the goal GX of PX introduce a
small change in the semantics of a standard classical plan-
ning problem, where a state s over PX is a goal state if there
is a substitution of the variables xi in GX by constants ci,
xi 7→ ci, xi ∈ X , ci ∈ O, such that the resulting fully
grounded goal GC is true in s; namely, GC ⊆ s. Quantifi-
cation is sometimes used in action preconditions and some-



times involves universal quantification, but we will leave this
to future work.

As mentioned above, existential quantification in goals
adds a second source of complexity in planning, as even in
the absence of actions, planning with existentially quanti-
fied goals is NP-hard (Francès and Geffner 2016). Most
existing classical planners do not support existentially quan-
tified goals, and those that do, compile the goal variables
away by considering all the possible goal groundings and
new, dummy actions, that map each one of them into a
new dummy goal that is to be reached. The problem with
this approach is that it is exponential in the number of
goal variables. Lifted planning approaches can deal with
quantified preconditions and goals without having to ground
them (Corrêa et al. 2020; Ståhlberg 2023), yet variables in
the goal affect the quality of the heuristics that can be ob-
tained, and approaches that aim to obtain more informed
heuristics have a costly overhead (Frances and Geffner 2015;
Francès and Geffner 2016)

5 Task: Learning to ground goals
The problem of generalized planning with partially (exis-
tentially) quantified goals can be split into two; namely,
learning to ground the goals; i.e., substituting the goal vari-
ables with constants, and learning a general policy for fully
grounded goals. Since the second problem has been ad-
dressed in the literature, we focus solely on the first part:
learning to ground a given partially quantified goal in a plan-
ning problem P that belongs to a large class of instances Q
over the same planning domain but which may differ from P
on several dimensions including the number of objects and
the number of goal atoms or variables.

We approach this learning task in a simple manner: by
learning to predict the optimal cost of partially grounded
goals G in families of problem instances P from a given
domain D. Recall that the cost of G is the cost of P if G is
the goal of P .

For making these cost predictions, a general value func-
tion V is learned to approximate the optimal cost function
V ∗. The value function V accepts a state s and a partially
quantified goal G and outputs a non-negative scalar that esti-
mates the (min) number of steps to reach a state s′ from s in
P such that s′ satisfies the goal G (i.e., there is a grounding
G′ of G that is true in s′). We write the target value function
as V (s;G) when we want to make explicit the goal G, else
we write it simply as V (s).

We learn the target value function V (s;G) over a given
domain, where G is a partially quantified goal, in a su-
pervised manner. Namely, for several small instances P
from the domain, we use as targets for V (s;G), the opti-
mal cost V ∗(s;G) of the problems P [s,G] that are like P
but with initial state s and goal G. The learned value func-
tion V (s;G) is expected to generalize among several dimen-
sions: different initial states, instances with more objects,
and different goals with more goal atoms, variables, or both.

The learned value function V (s;G) can then be used to
bind the variables in the partially quantified goal. For bind-
ing a single variable in G, we consider the goals G′ = Gx=c

that result from G by instantiating each variable x in G to

a constant c, while greedily choosing the goal G′ that mini-
mizes V (s;G′). For binding all the variables in G, the pro-
cess is repeated until a fully grounded goal is obtained.

The quality of these goal groundings can then be deter-
mined by the ratio V ∗(s;G′)/V ∗(s;G) where V ∗(s;G′)
is the optimal cost of achieving the grounded goal G′ and
V ∗(s;G) is the optimal cost of achieving the partially quan-
tified goal G. This ratio is 1 when the grounded goal G′ is
optimal and else is strictly higher than 1. For large instances,
for which the optimal values cannot be computed, V ∗ val-
ues are replaced by V L values obtained using a non-optimal
planner that accepts existentially quantified goals.

The ability to map quantified goals G into fully grounded
goals G’ can be used in two different ways. In classical plan-
ning, it can be used to seek plans for the quantified goals by
seeking plans for the fully grounded goal G′, while in gen-
eralized planning, it can be used to apply a learned general
policy π for achieving a partially quantified goal G: for this
G is replaced by G′.

6 Architecture
We use Graph Neural Networks (GNNs) to learn how to
bind variables to constants. Since plain GNNs can only pro-
cess graphs and not relational structures, we use a suitable
variant (Ståhlberg, Bonet, and Geffner 2022a). We describe
GNNs first and then this extension.

6.1 Graph Neural Networks
GNNs are parametric functions that operate on graphs
through aggregate and combination functions, denoted aggi
and combi, respectively (Scarselli et al. 2009; Gilmer et al.
2017; Hamilton 2020). GNNs maintain and update embed-
dings fi(v) ∈ Rk for each vertex v in a graph G. This
process is performed iteratively over L layers, starting with
i = 0 and the initial embeddings f0(v), and progressing to
fi+1(v) as follows:

fi+1(v) = combi

(
fi(v), aggi

({{
fi(w) | w ∈ NG(v)

}}))
(1)

where NG(v) is the set of neighboring nodes of v in the
graph G. The aggregation function aggi (e.g., max, sum,
or smooth-max) condenses multiple vectors into a single
vector, while the combination function combi merges pairs
of vectors. The function implemented by GNNs is well-
defined for graphs of any size and is invariant under graph
isomorphisms, provided that the aggregation functions are
permutation-invariant.

6.2 Relational GNNs
GNNs operate over graphs, whereas planning states s are
relational structures based on predicates of varying arities.
Our relational GNN (R-GNN) for processing these struc-
tures is inspired by the approach used for solving min-
CSPs (Toenshoff et al. 2021) and closely follows the one
used for learning general policies (Ståhlberg, Bonet, and
Geffner 2022a), where the objects oi in a relational structure
(state) exchange messages with the objects oj through the
atoms q = p(o1, . . . , om) in the structure that involves the



Algorithm 1 The Relational GNN (R-GNN) architecture
used to predict partially quantified goals.

1: Input: Set of atoms A, and set of objects O
2: Output: Embeddings fL(o) for each o ∈ O
3: Initialize f0(o) ∼ 0k for each node o ∈ N
4: for i ∈ {0, . . . , L− 1} do
5: for each atom q := p(o1, . . . , om) ∈ A do
6: mq,oj := [MLPp(fi(o1), . . . , fi(om))]j
7: end for
8: for each object n ∈ O do
9: fi+1(n) := MLPU

(
fi(o), agg

({{
mq,o | o ∈ q

}}))
10: end for
11: end for

two objects and possibly others. For dealing with existen-
tially quantified variables x, the variables x in the goal are
treated as extra objects in the state. The R-GNN shown in
Algorithm 1, maps a state s into a final embedding fL(o) for
each object in the state (including the variables), which feed
a readout function and outputs the value V (s) to be learned
by adjusting the weights of the network.

In the R-GNN, there are atoms instead of edges, and mes-
sages are passed among objects appearing in the same atom:

fi+1(o) = combi

(
fi(o), aggi

({{
mq,o | o ∈ q, q ∈ S

}}))
.

Here, mq,o for a predicate q = p(o1, . . . , om) and object
o = oj represents the message that atom q sends to object o,
defined as:

mq,oj =
[
combp

(
fi(o1), . . . , fi(om)

)]
j
,

where combp is the combination function for predicate p,
generating m messages, one for each object oj , from their
embeddings fi(oj). The combi function merges two vectors
of size k, the current embedding fi(o) and the aggregation
of the messages mq,o received at o.

In our implementation, all layers share weights, and the
aggregation function agg is the smooth maximum, which ap-
proximates the component-wise maximum. Each MLP con-
sists of three parts: first, a linear layer; next, the Mish acti-
vation function (Misra 2020); and then another linear layer.
The functions combi and combp correspond to MLPU and
MLPp in Algorithm 1, respectively. Note that, there is a dif-
ferent MLPp for each predicate p.

7 Learning the Value Function
The architecture in Algorithm 1 requires two inputs: a set
of atoms A and a set of objects O. Given a state s over a
set of objects O, along with a quantified goal G over both a
set of variables V and the objects O, we need to transform
these into a single set of atoms, A, and objects O. The set of
objects O = O ∪ V is set to contain the original object and
the variables, regarded as extra objects. The set of atoms A
in turn, is defined as

A = S ∪ {PG(·) : P (·) ∈ G} ∪ {CONSTANT(o) : o ∈ O}
∪ {VARIABLE(v) : v ∈ V } ∪ B.

Recall that for atoms in the goal, we use a specific goal
predicate PG, instead of P , to extend the atoms in the
state (Martı́n and Geffner 2004). In addition, we use the
unary predicates CONSTANT and VARIABLE to differentiate
between true objects and objects standing for variables. Fi-
nally, the set B contains a binary predicate, POSSIBLEBIND-
ING, that enables communication between objects and vari-
ables. We define B as:

B = {POSSIBLEBINDING(o, v) : o ∈ O, v ∈ V }.
Without these atoms, constants, and variables cannot com-
municate when the goal is fully quantified. This implies,
for example, that the final embedding of a variable does not
depend on the current state.

The set of node embeddings at the last layer of the R-GNN
is the result of the net; that is, R-GNN(A,O) = {fL(o) |
o ∈ O}. Such embeddings are used to encode general value
functions, policies, or both. In this paper, we encode a learn-
able value function V (S,G) through a simple additive read-
out that feeds the embeddings into an MLP:

V (s,G) = MLP
(∑

o∈O fL(o)
)
.

This value function will be used to iteratively guide a con-
troller to ground G, one variable at a time, until it is fully
grounded. This means that G can be a partially quantified
goal. Note that this is necessary because there is an expo-
nential number of possible bindings overall, but only a lin-
ear number of possible bindings for a single variable. The
loss we use for training the R-GNN is the mean square error
(MSE)

L(s,G) = (V (s,G)− V ∗(s,G))
2

over the states s and goals G in the training set. The cost of
a goal is defined as the optimal number of steps required to
achieve it from a given state, denoted by V ∗(s,G). A state
satisfies G if there exists a complete binding such that the
resulting grounded goal is true in s. We compute V ∗(s,G)
using breadth-first search (BFS) from s to determine the op-
timal distance to the nearest state that satisfies G. If there is
no reachable state that satisfies G, then we use a large cost
to indicate unsatisfiability (but not infinity). Generally, de-
ciding V ∗ is computationally expensive; however, we train
our networks on instances with small state spaces.

8 Expressivity Limitations
In our experiments, we focus primarily on the use of a fixed
set of colors. This same set is also used in the example pre-
sented in Section 2. Here, we explore why we chose to fix
the set of colors and demonstrate that if the colors were al-
lowed to vary as part of the input, R-GNNs would not be
expressive enough.

It is important to determine if an object o and a variable x
have the same color. Generally, we represent a color with an
object c and express that an object o has this color with the
atom HASCOLOR(o, c). Similarly, HASCOLOR(x, c) repre-
sents that a variable x has color c. To express that o and x
share the same color, we use the formula:

SAMECOLOR(o, x) = ∃c : HASCOLOR(o, c)

∧ HASCOLOR(x, c).
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(a) Grounded state. (b) Quantified goal.

Figure 1: A Blocks example. The goal shown on the right is:
∃x1, . . . x5 : BLUE(x1) ∧ RED(x2) ∧ BLUE(x3) ∧ RED(x4) ∧
RED(x5)∧ON(x1, x2)∧ON(x2, x3)∧ON(x3, x4)∧ON(x4, x5).
The cost of an optimal goal grounding is 9. In the experiments, our
learned model instead finds a suboptimal goal grounding with a
cost of 15.

Since this formula uses three variables, it is likely not in C2,
meaning that R-GNNs cannot infer it.

Instead, we use a fixed set of unary predicates C1, . . . , Cn

to denote colors. This allows us to express the SAMECOLOR
relation as:

SAMECOLOR(o, x) = [C1(o) ∧ C1(x)] ∨ . . .

∨ [Cn(o) ∧ Cn(x)] .

With only two variables used, this approach allows R-GNNs
to potentially learn whether two objects or variables share
the same color, as long as the number of colors is fixed. For
clarification, we do not use the SAMECOLOR predicate ex-
plicitly in our experiments, since it can be inferred using
POSSIBLEBINDING along with a fixed set of colors.

In conclusion, we use a fixed set of colors due to the
expressivity limitations of the R-GNN architecture, where
the color predicates are part of the domain. We also high-
light that not every unique variable in the quantified goal
contributes to the C2 limit. This is because some variables
do not overlap in scope, allowing them to be reused, which
helps keep the total number of variables down. This is illus-
trated in Section 11, where many variables are used in the
goal, but their total number is bounded by a fixed constant.

9 Domains
Now, we will describe the domains used in our experi-
ments and the types of goals that the architecture must learn
to ground. All domains are taken from the International
Planning Competition (IPC), but are augmented with col-
ors. With colors, we can express a richer class of goals,
where objects can be referred to by their (non-unique) col-
ors. However, the overall approach is general, and descrip-
tions involving other object attributes such as size or shape
and their combinations can also be used, if such predicates
are used in the training instances.

9.1 Blocks
Blocks is the standard Blockworld domain with a gripper
and block colors that can be used in the goals. Figure 1

depicts an instance of the domain involving 8 blocks, named
from A to H , and expressed as:

∃x1, . . . , x5 : BLUE(x1) ∧ RED(x2) ∧ BLUE(x3)

∧ RED(x4) ∧ RED(x5) ∧ ON(x1, x2)

∧ ON(x2, x3) ∧ ON(x3, x4) ∧ ON(x4, x5).

This goal requires constructing a tower in which a blue
block x1 rests on a red block x2, which in turn rests on a
blue block x3, which rests on a red block x4, and finally,
that rests on another red block x5. The optimal grounding
involves binding block x5 to block F and block x4 to block
A, so that the target tower is built on top of F .

Let us emphasize that the grounding problem tackled by
the learner is not easy. Firstly, the resulting binding needs to
be logically valid, meaning it must adhere to the static con-
straints of the goal, such as colors in this case. A binding
would be logically invalid if a variable xi is bound to a con-
stant c with a different color from xi in the goal. Secondly,
the resulting binding must lead to a reachable goal. In this
domain, it implies that no pair of variables xi can be bound
to the same constant, as the blocks xi need to form a single
tower. Lastly, the resulting binding needs to be optimal; that
is, it must be achievable in the fewest steps possible. None of
these three properties – validity, reachability, or optimality –
are hardcoded or guaranteed by the learning architecture, but
we can experimentally test them. Planners that handle exis-
tentially quantified goals by expanding them into grounded
DNF formulas ensure and exploit validity. By pruning the
DNF terms that are not logically valid, they exploit (but do
not guarantee) reachability by removing DNF clauses con-
taining mutually exclusive atom pairs.1 They ensure opti-
mality if they are optimal planners. In our setting, validity,
reachability, and optimality, or a reasonable approximation,
must be learned solely from training.

The domain called Blocks-C is essentially the same as the
Blocks domain, but instead of focusing on the relation ON,
it revolves around the relation CLEAR. This implies that
the goal is to dismantle towers to uncover blocks of specific
colors, with the fewest steps possible.

9.2 Gripper

In Gripper, there is a robot equipped with two grippers that
can pick up balls and move them between rooms. In our
version, the balls are colored, and there is a fixed number of
rooms that are not necessarily adjacent to each other. Fig-
ure 2 provides an example. In this figure, there are three

1They cannot precompute all mutually exclusive pairs. Addi-
tionally, states may remain unreachable even if they do not include
a mutually exclusive pair of atoms. For instance, in blocks, states
where a block is above itself, but not directly on itself, will be un-
reachable, despite lacking any mutually exclusive pairs.



State: 
('adjacent', 'rooma', 'roomc'), 
('adjacent', 'roomb', 'roomc'), 
('adjacent', 'roomc', 'rooma'), 
('adjacent', 'roomc', 'roomb'), 

('at', 'ball1', 'roomb'), 
('at', 'ball2', 'roomc'), 
('at', 'ball3', 'roomb'), 
('at', 'ball4', 'roomc'), 
('at', 'ball5', 'rooma'), 
('at', 'ball7', 'rooma'), 
('at', 'ball8', 'rooma'), 
('at-robby', 'rooma'), 

('blue', 'ball1'), 
('carry', 'ball6', 'right'), 

('free', 'left'), 
('green', 'ball8'), 

('red', 'ball2'), 
('red', 'ball5'), 
('red', 'ball6'), 

('yellow', 'ball3'), 
('yellow', 'ball4'), 
('yellow', 'ball7')

Goal: “('at', 'x1', 'rooma'), ('at', 'x2', 'rooma'), 
('at', 'x3', 'roomb'), ('at', 'x4', 'rooma'), ('at', 

'x5', 'roomc'), ('at', 'x6', 'roomc'), ('blue', 'x2'), 
('green', 'x3'), ('red', 'x4'), ('red', 'x5'), 

('yellow', 'x1'), ('yellow', 'x6')”

Min/max binding cost: 1/13
A C B

2 345

6

7

8

1

(a) Grounded state.
A C B

x5x6x4x1

x3

x2

(b) Predicted grounding.

Figure 2: A Gripper example. The goal is: ∃x1, . . . , x4 :[
YELLOW(x1)∧BLUE(x2)∧GREEN(x3)∧RED(x4)∧RED(x5)∧

YELLOW(x6)∧AT(x1, A)∧AT(x2, A)∧AT(x3, B)∧AT(x4, A)∧
AT(x5, C)∧AT(x6, C)

]
∧
[∧

i,j NEQ(xi, xj)
]
, where NEQ(x, y)

denotes that x and y have to be different constants. The grounding
of the goal that our learned model predicts is shown on the right.
This is an optimal binding with a cost of 8.

rooms labeled as A, B, and C. The goal is:

∃x1, . . . , x4 : YELLOW(x1) ∧ BLUE(x2) ∧ GREEN(x3)

∧ RED(x4) ∧ RED(x5) ∧ YELLOW(x6)

∧ AT(x1, A) ∧ AT(x2, A) ∧ AT(x3, B)

∧ AT(x4, A) ∧ AT(x5, C) ∧ AT(x6, C)

∧
[∧
i,j

NEQ(xi, xj)
]

The goal is to place a yellow ball x1, a blue ball x2 and a red
ball x4 in room A, a green ball x3 in room B, and a red ball
x5 and a yellow ball x6 in room C. The optimal solution is
to bind x1 to 7, x4 to 5, x5 to 2 and x6 to 4, since then the
goal atoms with these variables are already true in the initial
state. As for x2 and x3, these need to be bound to 1 and
8 respectively, since these are the only balls of the correct
color.

9.3 Delivery
In this domain, there is a truck, several packages, and a grid
with colored cells. The goal is to distribute the packages to
cells with specific colors. In the following example, there
are 3 packages, p1, p2, and p3, to be distributed using truck
t:

∃x1, . . . , x4 : AT(p1, x3) ∧ AT(p3, x2) ∧ AT(p4, x1)

∧ AT(t, x4) ∧ YELLOW(x1) ∧ RED(x2)

∧ GREEN(x3) ∧ BLUE(x4)

∧
[∧
i,j

NEQ(xi, xj)
]

To distribute these packages efficiently, the truck must de-
cide on an order to pick up the packages and deliver them to
cells close to this planned route to minimize the total cost.

In this example, the truck must deliver package p1 to a
green cell x3, p3 to a red cell x2, p4 to a yellow cell x1, and
then park the truck t in a blue cell x4. As seen in Figure 3(b),
the learned model selects cells close to where the packages
are, which lowers the total distance traveled by the truck.

p4 p1

p2

p3

(a) Grounded state.

x1

x4

x3

x2

(b) Predicted grounding.

Figure 3: A Delivery example. The goal is: ∃x1, . . . , x4 :
AT(p1, x3)∧AT(p3, x2)∧AT(p4, x1)∧AT(t, x4)∧YELLOW(x1)∧
RED(x2)∧GREEN(x3)∧BLUE(x4)∧

[∧
i,j NEQ(xi, xj)

]
, where

NEQ(x, y) denotes that x and y have to be different constants. Fig-
ure 3(b) shows the bindings of the learned model. This binding has
a cost of 11, while LAMA produces a plan with a cost of 17.

9.4 Visitall
In a more general version of Visit-1, presented in Section 2,
the robot is required to visit at least one cell of each color
specified in the goal while also minimizing the total distance
traveled. Figure 4 provides an example. The example goal
is:

∃x1, . . . , x5 :
[
BLUE(x1) ∧ BLUE(x3) ∧ BLUE(x4)

∧ RED(x2) ∧ RED(x5) ∧ VISITED(x1)

∧ VISITED(x2) ∧ VISITED(x3)

∧ VISITED(x4) ∧ VISITED(x5)
]

∧
[∧
i,j

NEQ(xi, xj)
]

The robot needs to visit 3 blue cells x1, x3, and x4, and 2
red cells x2 and x5. An optimal solution with a cost of 5
is shown in Figure 4. This domain poses a difficult opti-
mization problem, similar to but distinct from the Traveling
Salesman Problem (TSP).

10 Experimental Results
Once a model has been trained to predict the cost of partially
quantified goals relative to a state, it is then possible to use
it as a policy. If V is a learned model for some domain, then
it defines a policy πV over the space of partially quantified
goals as follows. Let s and G be a state and a goal, respec-
tively; the successors N(s,G) of s and G are a set of goals
where G has bound a single variable with a constant. The
policy πV is:

πV (s,G) = argmin
Gx=c∈N(s,G)

V (s,Gx=c).

The policy is iteratively used until the goal is fully grounded.
By binding a single variable, we avoid the combinatorial ex-
plosion that would occur when considering all possible com-



No xi ̸= xj constraint With xi ̸= xj constraints Random groundings
Domain # Cov. V ∗ V/V ∗ Cov. V ∗ V/V ∗ All Cov. Valid Cov. V/V ∗

Blocks 500 99.8 % 8.918 1.211 99.8 % 8.918 1.211 3.8 % 76.2 % 1.391
Blocks-C 500 99.8 % 3.402 1.103 100 % 4.478 1.019 6.8 % 100 % 1.797
Gripper 500 100 % 4.78 1.298 99.4 % 5.304 1.189 3 % 86.6 % 1.499
Delivery 500 99.8 % 9.016 1.238 100 % 9.224 1.177 10.8 % 100 % 1.522
Visitall 500 100 % 4.072 1.181 99.2 % 4.712 1.080 2.6 % 100 % 1.445

Table 1: This table shows how well the learned model performed on the optimal test sets (refer to Table 2). For each domain, we evaluate the
learned models in two settings: one where multiple variables assigned to the same object can result in valid bindings, and one where these are
always invalid. These settings are labeled as ”No xi ̸= xj constraint” and ”With xi ̸= xj constraints,” respectively. The ”#” column indicates
the number of test instances. The performance of the learned models is displayed as coverage (Cov.), which represents the percentage of
instances solved after grounding the goal. The average cost of optimal plans is shown in the V ∗ column, and the quality of the grounded goal
is presented as the ratio between the cost of the plan found using the grounded goal and the cost of an optimal plan in the V/V ∗ column.
Additionally, we compare the results to two baselines where groundings are randomly sampled: one considering all possible bindings and
another considering only those that satisfy static constraints (e.g., colors). These baselines are labeled as ”Random groundings,” with ”All”
and ”Valid” denoting the two methods, respectively. The quality ratio presented in V/V ∗ corresponds to the ”Valid” baseline.

x5

x4 x2

x3

x1

Figure 4: A Visitall example. The goal is: ∃x1, . . . , x5 :[
BLUE(x1) ∧ BLUE(x3) ∧ BLUE(x4) ∧ RED(x2) ∧ RED(x5) ∧

VISITED(x1) ∧ VISITED(x2) ∧ VISITED(x3) ∧ VISITED(x4) ∧
VISITED(x5)

]
∧

[∧
i,j NEQ(xi, xj)

]
, where NEQ(x, y) denotes

that x and y have to be different constants. An optimal grounding
with a cost of 5 is shown. In this case, LAMA fails to find a so-
lution within the time limit, but when combined with our learned
model, it solves the resulting grounded instance optimally.

binations. The number of iterations required to fully ground
G is equal to the number of variables.

We implemented the proposed method using PyTorch2

and trained the models on NVIDIA A10 GPUs with 24 GB
of memory. Training lasted a maximum of 100 000 epochs
or 72 hours. We used Adam (Kingma and Ba 2015) with a
learning rate of 0.001, using batch sizes ranging from 1024
to 8192. Each domain’s dataset comprised 40 000 pairs of
states and goals, 39 500 for training and 500 for validation.
The number of constants used in both the training and test-
ing sets are detailed in Table 2. During training, we used up
to 4 variables, while during testing, we used up to 6. Fur-
thermore, the trained models support up to 6 distinct colors.
The learned models have 30 layers and an embedding size
of 32. For each specific domain, we trained a single model
and the model with the lowest validation loss was used for
testing.

2Code, data, and models: https://zenodo.org/records/13235160

Optimal LAMA
Domain Train Test Test
Blocks [2, 7] 8 [9, 17]
Blocks-C [2, 7] 8 [9, 17]
Gripper [9, 11] 13 [15,47]
Delivery [6, 25] [26, 30] [31, 88]
Visitall [2, 16] 20 [25, 100]

Table 2: An overview of the different datasets used in our experi-
ments. The intervals represent the number of constants appearing
in the states. For instance, we train a model using up to 7 blocks for
the Blocks domain. Subsequently, we evaluate this model on two
different test sets: one where we were able to compute the cost of
an optimal binding, labeled as Optimal, and another where the cost
is determined using the LAMA planner, labeled as LAMA. In all
domains, the training set includes instances with 1 to 4 goal vari-
ables, and the test data includes instances with 1 to 6 goal variables.
The number of colors for each instance ranges from 1 to 6 for both
the training and test sets.

10.1 Results
As mentioned earlier, our goal is to learn goal groundings
that are: logically valid, reachable, and efficient (close to op-
timal). Tables 1 and 3 show the performance of our learned
models across various domains. Tables 4 and 5 delve deeper
into two specific domains, Blocks and Visitall, illustrating
how well the learned models scale and generalize with an
increasing number of constants. We discuss how the experi-
ments shed light on these properties.

Validity and reachabilty. A valid grounding is one that
satisfies static constraints, such as colors. For instance, the
learned models are permitted to bind a variable to a red block
even if that variable must be bound to a blue block. If this
occurs, the resulting grounded goal is unsatisfiable, leading
to an unsolvable instance. In Tables 1 and 3, the coverage
measures this property, as all solvable groundings must also
be valid. However, a valid grounding does not necessar-
ily have to be reachable from the given state. The cover-
age measures that the goal groundings are both valid and
reachable. In our experiments, our learned models result in
a system with very high coverage, meaning that the vast ma-
jority of the goal groundings are both valid and reachable.

https://zenodo.org/records/13235160


No xi ̸= xj constraint With xi ̸= xj constraints
Domain # Cov. LAMA Cov. V L V/V L Speedup Cov. LAMA Cov. V L V/V L Speedup
Blocks 500 100 % 99.4 % 11.93 1.245 19.837 100 % 99.2 % 11.93 1.245 19.837
Blocks-C 500 100 % 100 % 2.74 1.179 1.359 99.8 % 100 % 4.438 1.047 1.190
Gripper 500 97.6 % 96.2 % 6.368 1.263 104.335 99.6 % 97 % 7.07 1.239 68.306
Delivery 500 99 % 98.6 % 7.958 1.459 50.495 100 % 98.6 % 8.768 1.212 36.533
Visitall 500 100 % 98 % 4.884 1.480 33.219 88.8 % 96.6 % 5.306 1.122 43.468

Table 3: This table shows the performance of the learned model on the LAMA test sets (refer to Table 2). See Table 1 for explanations of
most columns. We were unable to compute V ∗ for these instances, so we approximate it using LAMA, denoted as V L. We evaluate two
configurations: first, LAMA using grounded goals obtained through our learned models, and second, LAMA using the quantified goal. The
coverage of the first and second configurations is presented in the ”Cov.” and ”LAMA Cov.” columns, respectively. The ”Speedup” column
illustrates the speedup of using the first configuration over the second.

Additionally, in Table 1, the baseline ”All Cov.” shows that
randomly grounding variables will likely result in an invalid
grounding. The other baseline, ”Valid Cov.”, randomly se-
lects a valid grounding, ensuring validity but not reachabil-
ity. However, it often leaves Blocks and Gripper instances
unsolvable. In contrast, our learned models produce goal
groundings that are both valid and reachable.

Efficiency. We evaluate efficiency in two datasets. Firstly,
in Table 1, we compare the actual cost of predicted goal
groundings, denoted as V , to the optimal cost of goal
groundings, denoted as V ∗. Secondly, in Table 3, where de-
termining V ∗ is computationally infeasible, we instead com-
pare against the plan length identified by LAMA (Richter
and Westphal 2010). These comparisons are presented as the
quotients V/V ∗ and V/V L in Tables 1 and 3, respectively.
We observe that our goal groundings are often close to op-
timal for smaller instances, with averages reaching up to
1.238. For larger instances requiring LAMA, goal ground-
ings degrade a bit, with averages reaching up to 1.48. It is
important to note that these ratios are calculated only over
instances solvable by both LAMA alone and LAMA with
our learned models and that LAMA does not necessarily find
an optimal plan for grounded goals. Tables 4 and 5 show
whether the quality of the goal groundings deteriorates as
the instance size increases in two domains: Blocks and Visi-
tall. It seems that the quality does not degrade, as it remains
consistent when the number of constants increases.

Scalability. LAMA compiles quantified goals by expanding
them into grounded DNF formulas, whose clauses become
the conditions of axioms that derive a new dummy atom.
This expansion is exponential in the number of goal vari-
ables, takes preprocessing time, and affects the quality of
the resulting heuristic. As a result, if LAMA is given a high-
quality grounded goal, it can avoid preprocessing and get
a more informed heuristic. The column labeled ”Speedup”
in Tables 1 and 3 indicates the speedup achieved by run-
ning LAMA with our learned models compared to LAMA
alone. We observe a two-order-of-magnitude speedup in the
Gripper domain in Table 3, and in most domains, we see a
one-order-of-magnitude speedup. Furthermore, in Tables 4
and 5, instances are aggregated based on size (# constants)
rather than by domain. This allows us to observe scalabil-
ity in the Blocks and Visitall domains, demonstrating that
the speedup increases with the instance size. In Table 5, as

Size # Cov. L. Cov. V L V/V L Speedup
7 33 100 % 100 % 18.485 1.131 0.453
9 33 100 % 100 % 15.939 1.399 4.207
11 31 100 % 100 % 14.645 1.198 16.818
13 27 100 % 100 % 14.111 1.491 1.843
15 33 100 % 100 % 11.545 1.247 6.964
17 29 100 % 93.1 % 11.778 1.476 136.028

Table 4: Performance and generalization scaling within the domain
of Blocks. The instances are scaled by the number of constants
(blocks), as shown in the column labeled ”Size”. Refer to Table 3
for explanations of the other columns. Note that, the largest in-
stance in the training set consists of exactly 7 constants. Therefore,
this table also illustrates how well the learned models generalize
beyond the training distribution.

the number of objects becomes very large, the coverage de-
creases for both LAMA alone and LAMA with the learned
model: in the first case, the search times out; in the second,
unreachable grounded goals are generated.

Size # Cov. L. Cov. V L V/V L Speedup
16 27 96.3 100 5.444 1.003 0.788
20 25 100 100 6.36 1.126 1.775
25 25 96 100 6.0 1.132 5.333
49 21 71.4 95.2 8.2 0.911 13.813
64 32 56.3 81.3 7.577 1.027 14.996
100 36 61.1 80.6 4.690 1.386 8.513

Table 5: Performance and generalization scaling within the domain
of Visitall. See Table 4 for explanations of the columns.

11 Analysis: Visit-Many

We now continue the example from Section 2 and present a
detailed analysis where a specific number of colors must be
visited. In our experiments, we allow the number of colors
in the goal to vary, but here we assume exactly k colors:

∃x1, . . . , xk : C1(x1) ∧ · · · ∧ Ck(xk),where Ci ∈ C.

To determine distances, we adjust the Boolean functions
P and SP to check if there is a path of length d that visits



cells with colors ⟨C1, . . . , Cn⟩ in the specified order:

P0,C(x) = C(x),

Pd,⟨C1,...,Cn⟩(x) = C1(x) ∧ Pd,C2,...,Cn
(x),

Pd,⟨C1,...,Cn⟩(x) = ∃y : CONN.(x, y) ∧ Pd−1,⟨C1,...,Cn⟩(y),

SPd,⟨C1,...,Cn⟩(x) = Pd,⟨C1,...,Cn⟩(x) ∧ ¬Pd−1,⟨C1,...,Cn⟩(x).

The colors in the subscript act like a queue: if the color of
the current cell matches the color in front of the queue, that
color is removed. The value function is then defined as:

GC̄ = ¬∃C ∈ C \ C̄ : [∃v : CG(v)] ,

Dd,C̄ = GC̄ ∧ ∃x :
[
AT-ROBOT(x) ∧ SPd,C̄(x)

]
,

V ∗(s;G) = min
d∈D,C̄∈Ck

d · [[Dd,C̄]] +N · [[¬Dd,C̄]].

Here, D is the fixed set of distances, C is the fixed set of all
colors, and Ck is the set of all ordered sequences of length
k, where each element is chosen from C (elements can be
repeated). The GC̄ feature is false when the goal involves a
color not in the sequence C̄. This is because both the goal
and the sequence allow for repetition. Since the number
of colors is fixed, we can expand the outer quantifier. We
assume that the given state does not contain any VISITED
atoms, since grounding should be done on the initial state.
If there is such an atom, V ∗ may return a suboptimal value.

No more than two variables are used at any point, indi-
cating that this domain with such quantified goals belongs
to C2. Note that this analysis excludes any inequality con-
straints, which might move the task outside of C2.

12 Conclusions
We considered the problem of learning to ground existen-
tially quantified goals, building on existing techniques for
learning general policies using GNNs. These methods usu-
ally require goals that are already grounded, and the aim is
to enable them to support existentially quantified goals by
grounding them beforehand. This preprocessing step is also
useful for classical planning, where existentially quantified
goals exponentially increase time and space requirements.
We also discuss this approach in relation to C2 logics, as it
builds on relational GNNs for representing and learning gen-
eral value functions (Ståhlberg, Bonet, and Geffner 2022a).

Grounding existentially quantified goals after learning is
computationally efficient and does not require search. The
process involves greedily following the learned value func-
tion, substituting one variable at a time with a constant.
However, learning such a value function is challenging be-
cause the grounded goals must satisfy conditions of logi-
cal validity, reachability, and optimality. We tested these
conditions experimentally on instances with more objects,
goal atoms, and variables. In the future, we plan to explore
unsupervised methods for grounding learning, fine-tuning
weights using reinforcement learning as done by (Ståhlberg,
Bonet, and Geffner 2023), and experimenting with GNN ar-
chitectures with improved expressive power (Barceló et al.
2020; Grohe 2021). This might include adding memory and
recursion capabilities (Pfluger, Cucala, and Kostylev 2024).
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Barceló, P.; Kostylev, E.; Monet, M.; Pérez, J.; Reutter, J.;
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