Learning to Ground Existentially Quantified Goals

Martin Funkquist¹, Simon Ståhlberg², Hector Geffner²

Linköping University¹, RWTH Aachen University²

November 7, 2024

Motivation

- ▶ We want agents that understand Natural Language (NL) instructions
- ▶ In NL we refer to objects with *descriptions*, not by *ids*
- ▶ In classical planning, goals are assumed to be grounded e.g. contain ids
- ▶ Goals represented with FOL existential quantifiers need no ids

Example

Goal: "Deliver a **blue** package to the house"

∃*x*(*Package*(*x*) ∧ *Blue*(*x*) ∧ *At*(*x*, *h*))

Classical Planning

- ▶ States and goals are represented as sets of propositional atoms $p(c_1, ..., c_n) \in S$.
- \triangleright A plan is a sequence of actions $a_0, ..., a_n$ that transitions from the initial state s_0 to a state where the goal atoms are true
- ▶ Full observability and deterministic actions assumed
- \triangleright Existentially quantified goals are handled in a way that is *exponential* in the number of variables e.g. $\exists x \varphi(x) = \bigvee_{o \in O} \varphi[x/o]$

Previous Work

- \blacktriangleright Learning general policies for classical planning using GNNs [Ståhlberg et al, 2022]
- ▶ General policies are policies for solving any instance, any ground goal
- \triangleright Can similar approach be used to handle existentially quantified goals *without having to expand them first*?

Task

- ▶ Learn to estimate cost *V* ∗ (*s*, *G*) of existentially quantified goal *G* from state *s*
- \blacktriangleright The cost is the length shortest plan to reach a state where the quantified goal is true
- \triangleright A quantified goal is true in a state, if there exists a *substitution* $x \leftarrow c$ for each variable in the goal such that the resulting grounded goal is true in the state

Method

- ▶ A Graph Neural Network (GNN) is trained to produce embeddings *fL*(*o*) for each object *o* in the planning instance
- ▶ Train value function $V(s, G) = MLP(\sum_{o \in O} f_L(o))$ to estimate cost for *partially* quantified goals
- ▶ Generalization is shown by training on small instances and testing on larger instances and different goals
- \triangleright Generalization made possible by fixed set of predicates per domain

Graph Neural Networks (GNNs)

- \triangleright GNNs are Neural Networks that operate on graphs
- ▶ GNNs maintain node embeddings $f_i(v) \in \mathbb{R}^k$ for each node $v \in G$ in the graph G .
- \triangleright Nodes in the graph send messages through the edges
- ▶ The embeddings are iteratively updated over *L* layers to produce $f_l(v)$
- ▶ Relational GNNs (R-GNNs) send messages between objects $o_i \in p(o_1, ... o_n)$ in atoms
- \triangleright An *MLP*_p is trained for each predicate p in the domain

GNN example

r1(a, b), r1(a, c), r2(c, b), $r3_g(x, y)$, r1 $_g(y, c)$

 $(1 + 4)$ $(1 + 4)$ $2Q$ 重 9 / 19

Method - Training

- ▶ Learning *V*(*s*, *G*) in supervised manner from small instances where *V* ∗ (*s*, *G*) available
- ▶ Data instances $\langle (s, G), V^*(s, G) \rangle$, where *s* is a state, *G* is a *partially* quantified goal and *V* ∗ (*s*, *G*) is the optimal cost for reaching *G*
- ▶ The model is trained to predict *V* ∗ (*s*, *G*) and the loss is the mean square error $\mathcal{L}(\bm{s},\bm{G})=(\bm{\mathsf{V}}(\bm{s},\bm{G})-\bm{\mathsf{V}}^*(\bm{s},\bm{G}))^2$
- \triangleright A separate network is trained for each domain using same architecture and hyperparameters

Method - Grounding

- ▶ Let $G' = G_{x=c}$ be the set of all partially quantified goals that result from grounding a *single* variable in *G* to a constant *c* ∈ *s*
- ▶ A *substitution* is made by replacing *x* with *c* such that $min_{x \in G, c \in S} V(s; G_{x=c})$
- ▶ This is done iterativly until *G'* is *fully grounded*, e.g. there are no variables left in *G*′
- ▶ The *quality* of a grounding is measured by the ratio *V* ∗ (*s*, *G*′)/*V* ∗ (*s*, *G*)
- \triangleright Exponential blowup is avoided by grounding single variable at a time

Grounding - Example

∃*x*(*Package*(*x*) ∧ *Blue*(*x*) ∧ *At*(*x*, *h*))

Domain - Blocks

 $\exists x_1, \ldots x_5$: Blue(x_1) ∧ Red(x_2) ∧ Blue(x_3) ∧ Red(x_4) ∧ Red(*x*₅) ∧ On(*x*₁, *x*₂) ∧ On(*x*₂, *x*₃) ∧ On(*x*₃, *x*₄) ∧ On(*x*₄, *x*₅)

Domain - Delivery

∃*x*₁, . . . , *x*₄ : At(p_1 , *x*₃) ∧ At(p_3 , *x*₂) ∧ At(p_4 , *x*₁) ∧ At(*t*, *x*₄) ∧ Yellow(x_1) ∧ Red(x_2) ∧ Green(x_3) ∧ Blue(x_4)

Results

- \blacktriangleright No $x_i \neq x_j$: no contraints on the variables
- ▶ With $x_i \neq x_j$: bindings are not valid if any two variables are bound to the same constant
- ▶ Random groundings: each variable is randomly bound to a constant

Results - LAMA

bold means top performing

- ▶ Instances here are larger than for *V* ∗
- ▶ Large speedup compared to LAMA

Expressivity Limitations

- ▶ Tight relationship between GNNs, Weisfeiler-Leman and two-variable first-order logic with counting quantifiers (*C*2) [Grohe, 2021]
- ▶ Example of C_2 logic: $\exists^{\geq 4}x$, $\exists y$ [$E(x, y)$] e.g. there exists a node *y* which has at least 4 neighbors
- ▶ *C*₂ provides an *upper bound* of the expressivity of our GNN model

Expressivity Limitations - Example

- \blacktriangleright Important to know if object and variable have same color
- ▶ *SameColor*(*o*, *x*) = ∃*c* : *HasColor*(*o*, *c*) ∧ *HasColor*(*x*, *c*), likely not in C_2 as it uses *three* variables o, x, c
- \blacktriangleright Fixed set of colors $C_1, ..., C_n$, then *SameColor*(*o*, *x*) = [*C*₁(*o*) ∧ *C*₁(*x*)] ∨ ... ∨ [*C_n*(*o*) ∧ *C_n*(*x*)], only need *two* variables *o*, *x*

Conclusions

- ▶ NL instruction following involves grounding abstract references to concrete objects
- ▶ Learning groundings by learning general value function *V*(*s*, *G*) that estimates cost of quantified goal *G* from state *s*
- \triangleright GNN-approach generalizes to any domain state and family of quantified goals
- ▶ Limitation: C2 restriction narrows the scope of the approach

K ロ メ イ 団 メ ペ ヨ メ ス ヨ メ ニ ヨ