Learning to Ground Existentially Quantified Goals

Martin Funkquist¹, Simon Ståhlberg², Hector Geffner²

Linköping University¹, RWTH Aachen University²

November 7, 2024

Motivation

- We want agents that understand Natural Language (NL) instructions
- In NL we refer to objects with descriptions, not by ids
- In classical planning, goals are assumed to be grounded e.g. contain ids
- Goals represented with FOL existential quantifiers need no ids

Example

Goal: "Deliver a **blue** package to the house"

 $\exists x (Package(x) \land Blue(x) \land At(x, h))$

イロン イロン イヨン イヨン 三日

Classical Planning

- States and goals are represented as sets of propositional atoms p(c₁,..., c_n) ∈ s.
- A plan is a sequence of actions a₀, ..., a_n that transitions from the initial state s₀ to a state where the goal atoms are true
- Full observability and deterministic actions assumed
- Existentially quantified goals are handled in a way that is *exponential* in the number of variables e.g. ∃xφ(x) = V_{o∈O} φ[x/o]

Previous Work

- Learning general policies for classical planning using GNNs [Ståhlberg et al, 2022]
- General policies are policies for solving any instance, any ground goal
- Can similar approach be used to handle existentially quantified goals without having to expand them first?

Task

- Learn to estimate cost V*(s, G) of existentially quantified goal G from state s
- The cost is the length shortest plan to reach a state where the quantified goal is true
- A quantified goal is true in a state, if there exists a substitution x ← c for each variable in the goal such that the resulting grounded goal is true in the state

Method

- A Graph Neural Network (GNN) is trained to produce embeddings f_L(o) for each object o in the planning instance
- ► Train value function $V(s, G) = MLP(\sum_{o \in O} f_L(o))$ to estimate cost for *partially* quantified goals
- Generalization is shown by training on small instances and testing on larger instances and different goals
- Generalization made possible by fixed set of predicates per domain

Graph Neural Networks (GNNs)

- GNNs are Neural Networks that operate on graphs
- ► GNNs maintain node embeddings $f_i(v) \in \mathbb{R}^k$ for each node $v \in G$ in the graph *G*.
- Nodes in the graph send messages through the edges
- The embeddings are iteratively updated over *L* layers to produce $f_L(v)$
- ▶ Relational GNNs (R-GNNs) send messages between objects $o_i \in p(o_1, ... o_n)$ in atoms
- ► An *MLP_p* is trained for each predicate *p* in the domain

GNN example

r1(a, b), r1(a, c), r2(c, b), r3_g(x, y), r1_g(y, c)

Method - Training

- Learning V(s, G) in supervised manner from small instances where V*(s, G) available
- Data instances ((s, G), V*(s, G)), where s is a state, G is a partially quantified goal and V*(s, G) is the optimal cost for reaching G
- ► The model is trained to predict $V^*(s, G)$ and the loss is the mean square error $\mathcal{L}(s, G) = (V(s, G) V^*(s, G))^2$
- A separate network is trained for each domain using same architecture and hyperparameters

Method - Grounding

- ▶ Let $G' = G_{x=c}$ be the set of all partially quantified goals that result from grounding a *single* variable in *G* to a constant $c \in s$
- ► A substitution is made by replacing x with c such that min_{x∈G,c∈s} V(s; G_{x=c})
- This is done iterativly until G' is fully grounded, e.g. there are no variables left in G'
- The quality of a grounding is measured by the ratio V*(s, G')/V*(s, G)
- Exponential blowup is avoided by grounding single variable at a time

Grounding - Example

 $\exists x (Package(x) \land Blue(x) \land At(x, h))$

Domain - Blocks

 $\exists x_1, \dots, x_5 : \mathsf{Blue}(x_1) \land \mathsf{Red}(x_2) \land \mathsf{Blue}(x_3) \land \mathsf{Red}(x_4) \land \\ \mathsf{Red}(x_5) \land \mathsf{On}(x_1, x_2) \land \mathsf{On}(x_2, x_3) \land \mathsf{On}(x_3, x_4) \land \mathsf{On}(x_4, x_5)$

Domain - Delivery

 $\exists x_1, \dots, x_4 : \mathsf{At}(p_1, x_3) \land \mathsf{At}(p_3, x_2) \land \mathsf{At}(p_4, x_1) \land \mathsf{At}(t, x_4) \land \mathsf{Yellow}(x_1) \land \mathsf{Red}(x_2) \land \mathsf{Green}(x_3) \land \mathsf{Blue}(x_4)$

ヘロン 人間 とくほど くほとう

Results

	No $x_i \neq x_j$		With $x_i \neq x_j$		Random groundings		
Domain	Cov.	V/V^*	Cov.	V/V^*	All Cov.	Val Cov.	V/V^*
Blocks	99.8 %	1.211	99.8 %	1.211	3.8 %	76.2 %	1.391
Blocks-C	99.8 %	1.103	100 %	1.019	6.8 %	100 %	1.797
Gripper	100 %	1.298	99.4 %	1.189	3 %	86.6 %	1.499
Delivery	99.8 %	1.238	100 %	1.177	10.8 %	100 %	1.522
Visitall	100 %	1.181	99.2 %	1.080	2.6 %	100 %	1.445

- No $x_i \neq x_j$: no contraints on the variables
- With x_i ≠ x_j: bindings are not valid if any two variables are bound to the same constant
- Random groundings: each variable is randomly bound to a constant

Results - LAMA

Domain	Cov. (%)	LAMA Cov. (%)	V/V^L	Speedup
Blocks	100 %	99.4 %	1.245	19.837
Blocks-C	100 %	100 %	1.179	1.359
Gripper	97.6 %	96.2 %	1.263	104.335
Delivery	99 %	98.6 %	1.459	50.495
Visitall	100 %	98 %	1.480	33.219

bold means top performing

- Instances here are larger than for V*
- Large speedup compared to LAMA

Expressivity Limitations

- Tight relationship between GNNs, Weisfeiler-Leman and two-variable first-order logic with counting quantifiers (C₂) [Grohe, 2021]
- ► Example of C_2 logic: $\exists^{\geq 4}x, \exists y[E(x, y)]$ e.g. there exists a node y which has at least 4 neighbors
- C₂ provides an *upper bound* of the expressivity of our GNN model

Expressivity Limitations - Example

- Important to know if object and variable have same color
- SameColor(o, x) = ∃c : HasColor(o, c) ∧ HasColor(x, c), likely not in C₂ as it uses three variables o, x, c
- Fixed set of colors C₁, ..., C_n, then SameColor(o, x) = [C₁(o) ∧ C₁(x)] ∨ ... ∨ [C_n(o) ∧ C_n(x)], only need *two* variables o, x

Conclusions

- NL instruction following involves grounding abstract references to concrete objects
- Learning groundings by learning general value function
 V(s, G) that estimates cost of quantified goal G from
 state s
- GNN-approach generalizes to any domain state and family of quantified goals
- Limitation: C2 restriction narrows the scope of the approach

Paper

イロン イロン イヨン イヨン 三日