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Motivation

» We want agents that understand Natural Language (NL)
instructions

» In NL we refer to objects with descriptions, not by ids

» In classical planning, goals are assumed to be grounded
e.g. contain ids

» Goals represented with FOL existential quantifiers need
no ids
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Example

Goal: “Deliver a blue package to the house”

St

N

£l

dx(Package(x) A Blue(x) A At(x, h))
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Classical Planning

» States and goals are represented as sets of
propositional atoms p(cy, ..., cn) € S.

» Aplanis a sequence of actions ay, ..., a, that transitions
from the initial state sy to a state where the goal atoms
are true

» Full observability and deterministic actions assumed

» Existentially quantified goals are handled in a way that
is exponential in the number of variables e.g.

Ixo(X) = Voeo plx/0]
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Previous Work

» Learning general policies for classical planning using
GNNs [Stahlberg et al, 2022]

» General policies are policies for solving any instance,
any ground goal

» Can similar approach be used to handle existentially
quantified goals without having to expand them first?
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Task

> Learn to estimate cost V*(s, G) of existentially
quantified goal G from state s

» The cost is the length shortest plan to reach a state
where the quantified goal is true

» A quantified goal is true in a state, if there exists a
substitution x « c for each variable in the goal such that
the resulting grounded goal is true in the state

6/19



Method

» A Graph Neural Network (GNN) is trained to produce
embeddings f; (o) for each object o in the planning
instance

» Train value function V(s, G) = MLP(}_ .o f.(0)) to
estimate cost for partially quantified goals

» Generalization is shown by training on small instances
and testing on larger instances and different goals

» Generalization made possible by fixed set of predicates
per domain
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Graph Neural Networks (GNNs)

» GNNs are Neural Networks that operate on graphs

» GNNs maintain node embeddings f(v) € R for each
node v € Gin the graph G.

» Nodes in the graph send messages through the edges

» The embeddings are iteratively updated over L layers to
produce f,(v)

» Relational GNNs (R-GNNs) send messages between
objects o; € p(0y4, ...0n) in atoms

> An MLP, is trained for each predicate p in the domain
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GNN example

r1(a, b), ri(a, ), r2(c, b), r3g(x, y), rigly, )
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Method - Training

» Learning V(s, G) in supervised manner from small
instances where V*(s, G) available

» Data instances ((s, G), V*(s, G)), where s is a state, G is
a partially quantified goal and V*(s, G) is the optimal
cost for reaching G

» The model is trained to predict V*(s, G) and the loss is
the mean square error £(s, G) = (V(s, G) — V*(s, G))?

» A separate network is trained for each domain using
same architecture and hyperparameters
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Method - Grounding

> Let G = Gx— be the set of all partially quantified goals
that result from grounding a single variable in Gto a
constantc e s

» A substitution is made by replacing x with ¢ such that
MiNyeG, ces V(s; Gx=c)

» This is done iterativly until G’ is fully grounded, e.g. there
are no variables left in G’

» The quality of a grounding is measured by the ratio
V*(s,G)/V*(s, G)

» Exponential blowup is avoided by grounding single
variable at a time
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Grounding - Example

dx(Package(x) N Blue(x) A At(x, h))

At(x, h),
Blue(x)
NS,
At(p1, h), At(p2,h), At(p3,h), At(p4,h),
Blue(p1) Blue(p2) Blue(p3) Blue(p4) AN
1 1 | | €
Cost: 15 Cost: = Cost: 9 Cost: «
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Domain - Blocks

C .

.
n .

|

State Goal

Jxq,... x5 : Blue(x1) A Red(xz2) A Blue(xs) A Red(x4) A
Red(x5) AN On(x1 , Xg) VAN On(Xg, X3) VAN On(x3, X4) VAN On(x4, X5)
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Domain - Delivery

State
E|X1 s

Goal
-y X4 At(p1, X3) A At(ps, X2) A At(ps, X1) A At(E, Xg) A
Yellow(xy) A Red(x2) A Green(xs) A Blue(xs)

[m]

=

nae
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Results

No x; # X With x; # X Random groundings
Domain Cov. V/Vv* Cov. V/V* | AllCov. ValCov. V/V*
Blocks 99.8% 1.211 [ 99.8% 1.211 3.8% 76.2% 1.391
Blocks-C | 99.8% 1.103 | 100% 1.019 6.8 % 100% 1.797
Gripper 100% 1.298 | 99.4% 1.189 3% 86.6% 1.499
Delivery | 99.8% 1.238 | 100% 1.177 | 10.8% 100% 1.522
Visitall 100% 1.181 | 99.2% 1.080 26 % 100 % 1.445

» No x; # x;: no contraints on the variables

> With x; # x;: bindings are not valid if any two variables
are bound to the same constant

» Random groundings: each variable is randomly bound

to a constant
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Results - LAMA

Domain | Cov. (%) LAMA Cov. (%) V/ vt Speedup
Blocks 100 % 99.4% 1.245 19.837
Blocks-C 100 % 100% 1.179 1.359
Gripper 97.6 % 96.2% 1.263 104.335
Delivery 929 % 98.6 % 1.459 50.495
Visitall 100 % 98 % 1.480 33.219

» Large speedup compared to LAMA

bold means top performing

» Instances here are larger than for V*
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Expressivity Limitations

» Tight relationship between GNNs, Weisfeiler-Leman and

two-variable first-order logic with counting quantifiers
(Cy) [Grohe, 2021]

» Example of C; logic: 324x, 3y[E(x, y)] e.g. there exists a
node y which has at least 4 neighbors

» C, provides an upper bound of the expressivity of our
GNN model
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Expressivity Limitations - Example

» Important to know if object and variable have same
color

» SameColor(o, x) = dc : HasColor(o, c) A HasColor(x, c),
likely not in C, as it uses three variables o, x, ¢

» Fixed set of colors Cy, ..., Cp, then
SameColor(o, x) = [C1(0) A C1(Xx)] V ... V [Cn(0) A Ch(x)],
only need two variables o, x
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Conclusions
» NL instruction following involves grounding abstract
references to concrete objects

» Learning groundings by learning general value function
V(s, G) that estimates cost of quantified goal G from
state s

» GNN-approach generalizes to any domain state and
family of quantified goals

» Limitation: C2 restriction narrows the scope of the
approach
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