
Learning to Ground
Existentially Quantified Goals

Martin Funkquist1, Simon Ståhlberg2, Hector Geffner2

Linköping University1, RWTH Aachen University2

November 7, 2024

1 / 19



Motivation

▶ We want agents that understand Natural Language (NL)
instructions

▶ In NL we refer to objects with descriptions, not by ids
▶ In classical planning, goals are assumed to be grounded

e.g. contain ids
▶ Goals represented with FOL existential quantifiers need

no ids

2 / 19



Example

Goal: “Deliver a blue package to the house”

∃x(Package(x) ∧ Blue(x) ∧ At(x ,h))

3 / 19



Classical Planning

▶ States and goals are represented as sets of
propositional atoms p(c1, ..., cn) ∈ s.

▶ A plan is a sequence of actions a0, ...,an that transitions
from the initial state s0 to a state where the goal atoms
are true

▶ Full observability and deterministic actions assumed
▶ Existentially quantified goals are handled in a way that

is exponential in the number of variables e.g.
∃xφ(x) =

∨
o∈O φ[x/o]

4 / 19



Previous Work

▶ Learning general policies for classical planning using
GNNs [Ståhlberg et al, 2022]

▶ General policies are policies for solving any instance,
any ground goal

▶ Can similar approach be used to handle existentially
quantified goals without having to expand them first?

5 / 19



Task

▶ Learn to estimate cost V ∗(s,G) of existentially
quantified goal G from state s

▶ The cost is the length shortest plan to reach a state
where the quantified goal is true

▶ A quantified goal is true in a state, if there exists a
substitution x ← c for each variable in the goal such that
the resulting grounded goal is true in the state

6 / 19



Method

▶ A Graph Neural Network (GNN) is trained to produce
embeddings fL(o) for each object o in the planning
instance

▶ Train value function V (s,G) = MLP(
∑

o∈O fL(o)) to
estimate cost for partially quantified goals

▶ Generalization is shown by training on small instances
and testing on larger instances and different goals

▶ Generalization made possible by fixed set of predicates
per domain

7 / 19



Graph Neural Networks (GNNs)

▶ GNNs are Neural Networks that operate on graphs
▶ GNNs maintain node embeddings fi(v) ∈ Rk for each

node v ∈ G in the graph G.
▶ Nodes in the graph send messages through the edges
▶ The embeddings are iteratively updated over L layers to

produce fL(v)

▶ Relational GNNs (R-GNNs) send messages between
objects oi ∈ p(o1, ...on) in atoms

▶ An MLPp is trained for each predicate p in the domain

8 / 19



GNN example

r1(a, b), r1(a, c), r2(c, b), r3g(x, y), r1g(y, c)

a

b

c

x y

r2

r1

r1

r3g
r1g

9 / 19



Method - Training

▶ Learning V (s,G) in supervised manner from small
instances where V ∗(s,G) available

▶ Data instances ⟨(s,G),V ∗(s,G)⟩, where s is a state, G is
a partially quantified goal and V ∗(s,G) is the optimal
cost for reaching G

▶ The model is trained to predict V ∗(s,G) and the loss is
the mean square error L(s,G) = (V (s,G)− V ∗(s,G))2

▶ A separate network is trained for each domain using
same architecture and hyperparameters

10 / 19



Method - Grounding

▶ Let G′ = Gx=c be the set of all partially quantified goals
that result from grounding a single variable in G to a
constant c ∈ s

▶ A substitution is made by replacing x with c such that
minx∈G,c∈s V (s;Gx=c)

▶ This is done iterativly until G′ is fully grounded, e.g. there
are no variables left in G′

▶ The quality of a grounding is measured by the ratio
V ∗(s,G′)/V ∗(s,G)

▶ Exponential blowup is avoided by grounding single
variable at a time

11 / 19



Grounding - Example

∃x(Package(x) ∧ Blue(x) ∧ At(x ,h))

At(x, h), 
Blue(x)

At(p1, h), 
Blue(p1)

At(p2, h), 
Blue(p2)

At(p3, h), 
Blue(p3)

At(p4, h), 
Blue(p4) …

Cost: 15 Cost: ∞ Cost: 9 Cost: ∞

12 / 19



Domain - Blocks

A

B

E

C

D

G

H F

State Goal

∃x1, . . . x5 : Blue(x1) ∧ Red(x2) ∧ Blue(x3) ∧ Red(x4) ∧
Red(x5) ∧On(x1, x2) ∧On(x2, x3) ∧On(x3, x4) ∧On(x4, x5)

13 / 19



Domain - Delivery

p4 p1

p2

p3

State

x1

x4

x3

x2

Goal

∃x1, . . . , x4 : At(p1, x3) ∧ At(p3, x2) ∧ At(p4, x1) ∧ At(t , x4) ∧
Yellow(x1) ∧ Red(x2) ∧ Green(x3) ∧ Blue(x4)

14 / 19



Results

No xi ̸= xj With xi ̸= xj Random groundings
Domain Cov. V/V ∗ Cov. V/V ∗ All Cov. Val Cov. V/V ∗

Blocks 99.8 % 1.211 99.8 % 1.211 3.8 % 76.2 % 1.391
Blocks-C 99.8 % 1.103 100 % 1.019 6.8 % 100 % 1.797
Gripper 100 % 1.298 99.4 % 1.189 3 % 86.6 % 1.499
Delivery 99.8 % 1.238 100 % 1.177 10.8 % 100 % 1.522
Visitall 100 % 1.181 99.2 % 1.080 2.6 % 100 % 1.445

▶ No xi ̸= xj : no contraints on the variables
▶ With xi ̸= xj : bindings are not valid if any two variables

are bound to the same constant
▶ Random groundings: each variable is randomly bound

to a constant

15 / 19



Results - LAMA

Domain Cov. (%) LAMA Cov. (%) V/V L Speedup
Blocks 100 % 99.4 % 1.245 19.837
Blocks-C 100 % 100 % 1.179 1.359
Gripper 97.6 % 96.2 % 1.263 104.335
Delivery 99 % 98.6 % 1.459 50.495
Visitall 100 % 98 % 1.480 33.219

bold means top performing

▶ Instances here are larger than for V ∗

▶ Large speedup compared to LAMA

16 / 19



Expressivity Limitations

▶ Tight relationship between GNNs, Weisfeiler-Leman and
two-variable first-order logic with counting quantifiers
(C2) [Grohe, 2021]

▶ Example of C2 logic: ∃≥4x ,∃y [E(x , y)] e.g. there exists a
node y which has at least 4 neighbors

▶ C2 provides an upper bound of the expressivity of our
GNN model

17 / 19



Expressivity Limitations - Example

▶ Important to know if object and variable have same
color

▶ SameColor(o, x) = ∃c : HasColor(o, c) ∧ HasColor(x , c),
likely not in C2 as it uses three variables o, x , c

▶ Fixed set of colors C1, ...,Cn, then
SameColor(o, x) = [C1(o) ∧ C1(x)] ∨ ... ∨ [Cn(o) ∧ Cn(x)],
only need two variables o, x

18 / 19



Conclusions
▶ NL instruction following involves grounding abstract

references to concrete objects
▶ Learning groundings by learning general value function

V (s,G) that estimates cost of quantified goal G from
state s

▶ GNN-approach generalizes to any domain state and
family of quantified goals

▶ Limitation: C2 restriction narrows the scope of the
approach

Paper

19 / 19


	Motivation

