Learning to Ground
Existentially Quantified Goals

Martin Funkquist', Simon Stahlberg?, Hector Geffner?

Linkdping University!, RWTH Aachen University?

November 7, 2024

WALLENBER A, Rm
AUTONDMOUS SYSTEMS
AND SOFTWARE PROGRAM

LINKOPING
II." UNIVERSITY

1719

Motivation

» We want agents that understand Natural Language (NL)
instructions

» In NL we refer to objects with descriptions, not by ids

» In classical planning, goals are assumed to be grounded
e.g. contain ids

» Goals represented with FOL existential quantifiers need
no ids

2/19

Example

Goal: “Deliver a blue package to the house”

St

N

£l

dx(Package(x) A Blue(x) A At(x, h))

3/19

Classical Planning

» States and goals are represented as sets of
propositional atoms p(cy, ..., cn) € S.

» Aplanis a sequence of actions ay, ..., a, that transitions
from the initial state sy to a state where the goal atoms
are true

» Full observability and deterministic actions assumed

» Existentially quantified goals are handled in a way that
is exponential in the number of variables e.g.

Ixo(X) = Voeo plx/0]

4/19

Previous Work

» Learning general policies for classical planning using
GNNs [Stahlberg et al, 2022]

» General policies are policies for solving any instance,
any ground goal

» Can similar approach be used to handle existentially
quantified goals without having to expand them first?

5/19

Task

> Learn to estimate cost V*(s, G) of existentially
quantified goal G from state s

» The cost is the length shortest plan to reach a state
where the quantified goal is true

» A quantified goal is true in a state, if there exists a
substitution x « c for each variable in the goal such that
the resulting grounded goal is true in the state

6/19

Method

» A Graph Neural Network (GNN) is trained to produce
embeddings f; (o) for each object o in the planning
instance

» Train value function V(s, G) = MLP(}_ .o f.(0)) to
estimate cost for partially quantified goals

» Generalization is shown by training on small instances
and testing on larger instances and different goals

» Generalization made possible by fixed set of predicates
per domain

7/19

Graph Neural Networks (GNNs)

» GNNs are Neural Networks that operate on graphs

» GNNs maintain node embeddings f(v) € R for each
node v € Gin the graph G.

» Nodes in the graph send messages through the edges

» The embeddings are iteratively updated over L layers to
produce f,(v)

» Relational GNNs (R-GNNs) send messages between
objects o; € p(0y4, ...0n) in atoms

> An MLP, is trained for each predicate p in the domain

8/19

GNN example

r1(a, b), ri(a,), r2(c, b), r3g(x, y), rigly,)

9/19

Method - Training

» Learning V(s, G) in supervised manner from small
instances where V*(s, G) available

» Data instances ((s, G), V*(s, G)), where s is a state, G is
a partially quantified goal and V*(s, G) is the optimal
cost for reaching G

» The model is trained to predict V*(s, G) and the loss is
the mean square error £(s, G) = (V(s, G) — V*(s, G))?

» A separate network is trained for each domain using
same architecture and hyperparameters

10/19

Method - Grounding

> Let G = Gx— be the set of all partially quantified goals
that result from grounding a single variable in Gto a
constantc e s

» A substitution is made by replacing x with ¢ such that
MiNyeG, ces V(s; Gx=c)

» This is done iterativly until G’ is fully grounded, e.g. there
are no variables left in G’

» The quality of a grounding is measured by the ratio
V*(s,G)/V*(s, G)

» Exponential blowup is avoided by grounding single
variable at a time

11/19

Grounding - Example

dx(Package(x) N Blue(x) A At(x, h))

At(x, h),
Blue(x)
NS,
At(p1, h), At(p2,h), At(p3,h), At(p4,h),
Blue(p1) Blue(p2) Blue(p3) Blue(p4) AN
1 1 | | €
Cost: 15 Cost: = Cost: 9 Cost: «

12/19

Domain - Blocks

C .

.
n .

|

State Goal

Jxq,... x5 : Blue(x1) A Red(xz2) A Blue(xs) A Red(x4) A
Red(x5) AN On(x1 , Xg) VAN On(Xg, X3) VAN On(x3, X4) VAN On(x4, X5)

13/19

Domain - Delivery

State
E|X1 s

Goal
-y X4 At(p1, X3) A At(ps, X2) A At(ps, X1) A At(E, Xg) A
Yellow(xy) A Red(x2) A Green(xs) A Blue(xs)

[m]

=

nae
14/19

Results

No x; # X With x; # X Random groundings
Domain Cov. V/Vv* Cov. V/V* | AllCov. ValCov. V/V*
Blocks 99.8% 1.211 [99.8% 1.211 3.8% 76.2% 1.391
Blocks-C | 99.8% 1.103 | 100% 1.019 6.8 % 100% 1.797
Gripper 100% 1.298 | 99.4% 1.189 3% 86.6% 1.499
Delivery | 99.8% 1.238 | 100% 1.177 | 10.8% 100% 1.522
Visitall 100% 1.181 | 99.2% 1.080 26 % 100 % 1.445

» No x; # x;: no contraints on the variables

> With x; # x;: bindings are not valid if any two variables
are bound to the same constant

» Random groundings: each variable is randomly bound

to a constant

15/19

Results - LAMA

Domain | Cov. (%) LAMA Cov. (%) V/ vt Speedup
Blocks 100 % 99.4% 1.245 19.837
Blocks-C 100 % 100% 1.179 1.359
Gripper 97.6 % 96.2% 1.263 104.335
Delivery 929 % 98.6 % 1.459 50.495
Visitall 100 % 98 % 1.480 33.219

» Large speedup compared to LAMA

bold means top performing

» Instances here are larger than for V*

16/19

Expressivity Limitations

» Tight relationship between GNNs, Weisfeiler-Leman and

two-variable first-order logic with counting quantifiers
(Cy) [Grohe, 2021]

» Example of C; logic: 324x, 3y[E(x, y)] e.g. there exists a
node y which has at least 4 neighbors

» C, provides an upper bound of the expressivity of our
GNN model

17/19

Expressivity Limitations - Example

» Important to know if object and variable have same
color

» SameColor(o, x) = dc : HasColor(o, c) A HasColor(x, c),
likely not in C, as it uses three variables o, x, ¢

» Fixed set of colors Cy, ..., Cp, then
SameColor(o, x) = [C1(0) A C1(Xx)] V ... V [Cn(0) A Ch(x)],
only need two variables o, x

18/19

Conclusions
» NL instruction following involves grounding abstract
references to concrete objects

» Learning groundings by learning general value function
V(s, G) that estimates cost of quantified goal G from
state s

» GNN-approach generalizes to any domain state and
family of quantified goals

» Limitation: C2 restriction narrows the scope of the
approach

19/19

	Motivation

