Managing Infinite Abstractions in Numeric Pattern Database Heuristics

Markus Fritzsche', Daniel Gnad'?, Mikhail Gruntov’, Alexander Shleyfman*

Linkoping University, Sweden
?Heidelberg University, Germany
3Technion, Israel
4Bar-Ilan University, Israel
markus.fritzsche @liu.se, daniel.gnad @uni-heidelberg.de, gruntovm @campus.technion.ac.il, alexash@biu.ac.il

Abstract

Pattern Database (PDB) heuristics are an established ap-
proach in optimal classical planning that is used in state-
of-the-art planning systems. PDBs are based on projections,
which induce an abstraction of the original problem. Com-
puting all cheapest plans in the abstraction yields an admissi-
ble heuristic. Despite their success, PDBs have only recently
been adapted to numeric planning, which extends classical
planning with numeric state variables. The difficulty in sup-
porting numeric variables is that the induced abstractions, in
contrast to classical planning, are generally infinite. Thus,
they cannot be explored exhaustively to compute a heuristic.
The foundational work that introduced numeric PDBs em-
ployed a simple approach that computes only a finite part of
the abstraction. We analyze this framework and identify cases
where it necessarily results in an uninformed heuristic. We
propose several improvements over the basic variant of nu-
meric PDBs that lead to enhanced heuristic accuracy.

Code — https://github.com/dgnad/numeric-fast-downward
Datasets — https://doi.org/10.5281/zenodo.17592540

Introduction

Numeric planning concerns the algorithmic generation of
action sequences that transition a state space from a given
initial state to a goal state. In the past, research predomi-
nantly focused on classical planning, characterized by finite-
domain state variables. However, practical applications of-
ten require reasoning over numerical quantities, such as re-
source consumption or spatial distances. Numeric planning,
where state variables may assume numerical values, enables
such scenarios. As a consequence of allowing numeric vari-
ables, state spaces are generally infinite, which makes nu-
meric planning undecidable (Helmert 2002). Despite the
high complexity, effective algorithms for numeric planning
have been developed (Shin and Davis 2005; Gerevini, Saetti,
and Serina 2008; Illanes and Mcllraith 2017; Cardellini,
Giunchiglia, and Maratea 2024), which are often based
on heuristic search (Eyerich, Mattmiiller, and Roger 2009;
Coles et al. 2013; Scala et al. 2016; Li et al. 2018; Scala
etal. 2017; Aldinger and Nebel 2017; Piacentini et al. 2018;
Kuroiwa et al. 2022; Kuroiwa, Shleyfman, and Beck 2023).

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our work extends a recently proposed heuristic-search ap-
proach to optimal numeric planning using pattern database
(PDB) heuristics (Gnad et al. 2025). We adopt the estab-
lished simple numeric planning (SNP) formalism, where nu-
meric variables are subject to changes by a constant, and pre-
conditions and goals are defined by linear inequalities (Hoff-
mann 2003; Scala et al. 2016). PDB heuristics are known for
their effectiveness in classical planning and are based on a
projection of the state space onto a subset of variables, the
pattern. The abstract state space induced by the pattern is
explored exhaustively, and shortest goal distances are com-
puted and stored for all abstract states (Culberson and Scha-
effer 1996, 1998; Edelkamp 2002; Holte et al. 2004; Felner,
Korf, and Hanan 2004; Haslum, Bonet, and Geffner 2005;
Holte et al. 2006; Anderson, Holte, and Schaeffer 2007;
Haslum et al. 2007; Katz and Domshlak 2009).

While PDBs are widely used in classical planning, their
application to numeric planning remains limited. Gnad et al.
(2025) introduced numeric PDBs recently, addressing the
challenge of infinite abstract state spaces by only partially
exploring the abstractions. Their results showed the potential
of PDBs for SNP, but limitations remain: (1) their methods
may explore irrelevant abstract states, (2) when no abstract
goal is found their PDBs may perform no better than a blind
heuristic, (3) their heuristic is completely uninformed in un-
explored parts of the abstraction. We advance the numeric
PDB framework to address these limitations. We tackle (1)
and (2) with a targeted exploration of the abstraction via A*
search with an alternative heuristic. We combine PDBs with
admissible heuristics for abstract states in the fringe of the
explored state space as well as unseen states to address (3).
Moreover, we adopt a technique known from cartesian ab-
stractions to refine the heuristic during search (Eifler and
Fickert 2018) where the estimates are missing due to the par-
tial exploration. Our enhancements significantly improve the
heuristic quality compared to the numeric PDBs developed
by Gnad et al. (2025), leading to a substantial performance
increment on common numeric planning benchmarks.

Preliminaries

We build on a common numeric planning formalism, termed
restricted numeric tasks (RT) (Hoffmann 2003), that ex-
tends the finite-domain representation (FDR) (Backstrom
and Nebel 1995; Helmert 2009) to include numeric fluents.

The plan existence problem for RT is undecidable (Helmert
2002), even for highly restricted cases (Gnad et al. 2023).
An RT is given as a tuple II = (V, A, so,G), where
VY =V, UV, denotes the set of numeric and finite-domain
variables, A represents the finite set of actions, sq is the ini-
tial state, and G describes the goal conditions. Each variable
v € V, has a finite domain D(v) if v € V,, and D(v) = Q
otherwise, where Q are rationals. A state s = (sp, sy) is
a complete assignment to the variables in V, where s, €
X pev, D(v) and s, € X ¢y, Q. Conditions in RT can be

either propositional or numeric. Propositional conditions of
the form (v, d) are called facts, where v € V,, and d € D(v).
Numeric conditions are (in)equalities of the form v > w,
where € {>, > = <,<},v € V,,, and w € Q. A state
s satisfies a condition ¢ if the corresponding constraint is
fulfilled, denoted by s = .

An action a € A is specified by (pre(a), eff (a)), where
pre(a) and eff(a) are the preconditions, a set of conditions,
and effects, a set of effects, respectively. Effects can be
propositional, i.e., facts (v, d), where v € V, and d € D(v),
or numeric. Numeric effects in RT are expressed as (v +=
m), with v € V,, and m € Q \ {0}. Such effects are of-
ten called simple. An action a is applicable in a state s if
s = pre(a), and its application results in a new state de-
noted s[a]. Each action modifies each variable at most once.
Actions have non-negative costs cost(a) € R,

The goal G consists of propositional and numeric condi-
tions. A state s, is a goal state if it satisfies G, i.e., s, E G.
An s-plan is a sequence of actions leading from the state s to
a goal state, with the plan cost being the sum of action costs.
An optimal s-plan minimizes this cost, denoted by h*(s). If
no goal state is reachable from s, then h*(s) = oo. A (opti-
mal) plan for IT is an (optimal) s¢-plan.

The state space of 11 is a labeled transition system (LTS)
which is defined as T = (S, L, cost, T, sq, Sx), where S
is the set of states of II, L are the action labels A, cost
is the action cost function, and 7' is the set of transitions
(s,s',a) € S x S x L with a being applied in s leading to
s'. The set S, consists of the goal states. The state space of
an RT is generally infinite due to numeric variables. The path
cost between states s and s’ is cost(s, s’), with the minimum
path cost denoted as cost*(s,), and cost*(s, s) = 0.

SNP to RT Following Hoffmann (2003), Scala, Haslum,
and Thiébaux (2016) introduced simple numeric planning
(SNP), where numeric effects are simple and conditions are
linear. Hoffmann (2003) showed that SNP can be compiled
to RT in polynomial time w.r.t. active numeric conditions,
replacing each formula with a numeric variable.

PDB Heuristics for Optimal Classical Planning

Pattern database (PDB) heuristics h* project the task II on
a subset of its variables, called the pattern P C V), ignoring
variables V' \ P. This projection H| p induces an abstraction,
which maps each state in the (concrete) state space of II to
an abstract state in the abstract state space by restricting all
expressions to the variables in P. The set of abstract states
in a projection is given by S‘P = {s]P | s € S}. The PDB
heuristic 2” is defined as the perfect heuristic in the pro-

jection H| p- PDB heuristics are usually precomputed once
by determining the optimal costs, h*| (s ‘ p)» for all abstract
states s’ p € S‘ P Thus, for each state s € S we define the
PDB heuristic as A := h* |P(s|P).

A heuristic b : S — R U {oo} is admissible if h(s) <
h*(s) for all states s € S. PDB heuristics are admissible and
can be used for optimal planning within an A* search (Hart,
Nilsson, and Raphael 1968) to estimate the cost to goal.

PDBs for Numeric Variables

In classical planning, PDBs are typically computed by gen-
erating the entire transition system for a given projection.
However, since numeric variables have infinite domains,
projecting the task onto a pattern that includes at least one
numeric variable generally results in an infinite abstraction.

To address this challenge, Gnad et al. (2025) proposed an
approach to handle potentially infinite transition systems, es-
sentially expanding only a finite fragment of the abstraction.

Bounding Infinite Transition Systems Let 7 be a transi-
tion system with initial state so. We are interested only in the
states that can be reached from sq. Consider a sub-transition
system 7 over the states S := Sg U Sp, s.t.

1. TCTand S, C S,;

2. states in S are reachable from s;

3.if s € Sp and (s,',1) € T then (s,s',1) € T, i.e., all
successors of states in Sg are in T,

4. if s is in S than either none of its successors are in T,
i.e., s has no outgoing edges in 7, or s € S,.

Gnad et al. (2025) propose uniform cost search (UCS) to
gradually traverse the transition system by expanding nodes
according to their distance from the abstract initial state sg.
The expanded fragment of 7 corresponds to the graph ex-
plored by UCS. Here, Sg denotes the set of expanded nodes,
and Sy denotes the fringe nodes. Moreover, Sp N.Sp C S,.
The heuristic is then defined for the states in Sg U Sp:

d(s) := min {cost*(s,s') + d(s")}, with
s’eSk

d(s') = 0if ' € S, or the minimum action cost otherwise.

Homomorphisms of Infinite LTS We use the standard
definition of LTS homomorphisms (or abstractions) to argue
that the distance-to-goal of the image yields an admissible
heuristic (Libkin 2004; Gnad et al. 2025).

Definition 1. Ler T = (S, L,cost, T, so,Sx) and T' =
(S, L' cost’, T", s(, St). Amap o : SUL — S"UL"is
an LTS homomorphism if:

1. a(S)C S, a(L)C L,

a(T) C T, where (s, s',1)) = (a(s), a(s'), a(0)),
cost’(a(1)) < cost(l) foralll € L,

a(sg) = sp, a(S) C S,

The map « is extended to sequences and sets elementwise,
and we write «(7) for the image of 7. Since existential-
positive formulas are homomorphism-invariant, plans are
preserved, with non-increasing costs:

KW

Figure 1: Illustration of the heuristic values for two initial
states so and s in uninformed (left) and informed (right)
partial expansion of the projection.

Theorem 1. For any homomorphism o of an LTS T and a
state s of S we have that h*(a(s)) < h*(s), i.e., the map
aoh*: S — R U{oo} is an admissible heuristic for T.

A projection on a pattern forms an LTS homomorphism.
We remark that «(s) and s|p are not the same, since all pro-
jections are abstractions, but not vice versa.

Targeted Projection Exploration using A*

Gnad et al. (2025) proposed partial exploration of abstract
transition systems induced by selected patterns. We analyze
weaknesses of this approach and suggest improvements.

Why Exploring the Right States Matters

For a state s a PDB heuristic h”’ approximates the goal
distance by its exact abstract goal distance h*(s|p) in the
projected task II|p. But this cannot be computed on a par-
tially explored abstraction, in particular if no abstract goal
state was reached. Figure 1 demonstrates that having ex-
plored an abstract goal state in the PDB does not guaran-
tee that the actual goal distance is reported for most of the
explored states. Let s; and s} be states on the fringe Sg
of the explored regions, and assume that the Euclidean dis-
tance in the figure corresponds to the actual distance be-
tween states in the abstraction. On the left, we have d(sg) =
cost* (s, s«) < cost*(sg, s1) + d(s1). On the other hand,
d(s() reports cost*(sp,st) + d(s}), since s§ may lie on
a path with cost lower than the cost to the explored goal.
This intuition suggests that we always want some “padding”
around each state to increase its heuristic value. It also in-
dicates why exploring the abstraction using a greedy search
or random walks yields poor results in this setting — most
states in the explored area lie on or very close to the fringe.
We suggest an A* algorithm guided by an admissible heuris-
tic to improve this process, aiming to increase the “padding”
for the explored states and reporting the actual goal distances
rather than the distance to the fringe.

Abstraction Exploration using A*

Progressing the abstract state space using UCS does not
guarantee that abstract goal states are included in the PDB.
The informative value of such a PDB is limited, as the
heuristic values reported are merely distances to the fringe.
Consider for illustration the extreme case where the abstract
state space and the concrete state space are identical and the

cost function is uniform. Without reached abstract goal such
a PDB heuristic is entirely uninformed (see Proposition 2).

To counteract this, we propose adapted progression and
regression algorithms of the PDB generation to increase
the chance of covering abstract goals. Using an admissible
heuristic ~ and a slightly altered A* algorithm, we search
for the closest goal state in the abstract state space. Contrary
to regular A* we do not stop the search once the first goal
state is retrieved from the open list. Instead, we continue
the exploration until the number of generated unique states
reaches a predetermined bound B. The choice of B is de-
termined empirically. Preliminary experiments with B val-
ues from 5.000 to 100.000 showed that our approach is ro-
bust with noticeable difference only in the sailing domain. In
the regression step, we initialize every non-goal, non-closed
state s in the open list (these are the fringe states — Sp), with
its heuristic value h(s).

Estimating Goal Distances

Consider an LTS homomorphism « : 7 — T’ between two
(possibly infinite) transition systems. If h is an admissible
heuristic for 7", then o o h is also admissible for 7. We
propose to use admissible goal estimates for a finite sub-
transition system of 7, denoted 7. For the purpose of con-
structing a PDB heuristic, we may assume that 7 originates
from a pattern defined over numeric variables, although this
assumption is not required for the discussion that follows.

Let T = (S, L, cost, T, s, S«) be a finite sub-transition
system of 77, and let S := Sg U S be the states that cor-
respond to the nodes expanded by a search within the Best
First Search paradigm that does not stop after encountering
goal states, where Sg corresponds to the expanded nodes
and Sr to the open nodes in the fringe and goal states.

For a heuristic i on S we define the following refinement:

P(s) = ming eg, {cost*(s,s’) + h(s")} ifse Sg
" h(s) otherwise.

Note that / is defined only on the set S.

Proposition 1. If h is admissible so is h(s), moreover if h
is consistent, then so is h. h dominates h.

Proof. Note that for each s ¢ Sg we have h(s) = h(s). It
remains to show admissibility for s € Sg.

Admissibility: Note that for a goal state s, € Sr we have
h(ss) = 0.Let 7} be an optimal s-plan. Since, by definition
of T, for each s € Sg, along each s-plan 7 there is at least
one state s’ such that s’ € Sp. Take the first such state. Let
s} be such a state for 7}. Then,

h*(s) = cost* (s, s3) + h*(sk)
> min {cost*(s,s) 4+ h(s')} = h(s).
s'eSkE

Consistency: Since h is consistent, we have h(s) <
cost*(s,s’) + h(s’") for every s’ reachable from s. Let
s,s' € S such that (s,s',l) € T. We aim to prove that

h(s) < cost(l) + h(s'). This inequality holds trivially for
each s € S, by admissibility of h, since h(s) = 0 for all goal

states. Therefore, the condition also holds for all s € Sf, as

each such state there is either a goal or has no successors.
Assume then that s € Sg\ SF, the successor of s denoted

s’ can be either in S orin Sg. If s’ is in Sr we have that:

h(s) = min {cost"(s, s") + h(s")}
s""eSFE
< cost*(s, s') + h(s") < cost(l) + h(s'),

since h(s') = h(s'). Now, assume that s’ € Sg. Since h is
consistent we have:

h(s) = m€1§1 {cost™(s,s") + h(s")}
s// P
<cost*(s,s’) + Hélél {cost*(s',s") + h(s")}
s/ "
<cost* (s, s') + h(s') < cost(l) + h(s'). O

Is Reaching an Abstract Goal Important?

We demonstrate that PDBs can provide informative guid-
ance even when no goal states are reached in the ab-
straction (Example 1). This challenges the naive assump-
tion that goal-unreached abstractions are necessarily unin-
formed. Proposition 2, in contrast, serves as a kind of “no
free lunch” observation: it shows that within a fully explored
region that contains no goal states, the PDB refined using the
blind heuristic offers no advantage over the blind heuristic it-
self in terms of node expansions. We employ the commonly
used blind heuristic, where d(s) = 0 if s is a goal state, and
the minimal cost of the actions applicable in s otherwise.

Example 1. Consider the problem withV =V, = {z,y, 2}
and three unit-cost actions with no preconditions and a sin-
gle effect each. The effects have the formx +=1, y += 1,
and z += 1. The initial state is given by Vv : so[v] = 0, for
simplicity we will write it as (0,0,0). The goal condition is
G={z=4,y=1,2=1}, or (4,1,1) in short.

Consider the pattern P = {x}. Since we assume no goal
state is reached in the projection of our TS to P, say only
the abstract states x € {0,1,2} are explored, where S =
{zr =0,z =1} and Sp = {x = 2}. Since x = 2 is not the
goal, we get d(x = 2) = 1. Thus, the PDB heuristic is

h(z=2)=1hz=1)=2h(z=0) =3,

and h = d otherwise.

Let g be the distance of the goal from the initial state. Let
us look at A* with the following priority functions f1 = g+h
and fo = g + d. fi corresponds to the PDB heuristic, and
fo to the “improved” blind heuristic.

For the single goal state we have fi1(4,1,1) =
f2(4,1,1) = g(4,1,1) = 6. So, A* will expand all states
with f-value smaller than 6 and will not expand states with
f-value greater than 6. Let us look at the state (0,2,2):

£1(0,2,2) =443 ="Tand f,(0,2,2) =4+ 1 =5.

Thus, (0,2,2) will be expanded by blind search, but not by
A™ with the PDB heuristic.

The example illustrates that even if the PDB heuristic does
not reach a goal state, it can still provide more informative

guidance than a blind heuristic. This is particularly relevant
when using partial pattern projections that cover only a lim-
ited number of variables. To better understand the practical
implications of such heuristics in early layers of the search,
we now analyze how the refined heuristic & compares to the
improved blind heuristic d within a bounded search depth.
Specifically, we consider the structure of states within a fixed
cost-radius around the initial state. We show that, under as-
sumptions that no abstract goal states are reached and the
expanded PDB region preserves the original distances, A*
guided by h expands the same set of nodes up to the f-layer
r 4+ 1 as A* guided by the blind heuristic d.

Proposition 2. Consider a unit-cost RT task 11 with induced
TS T, and denote by S the states of 11. Let g(s) be the cost
of getting from sq to a state s € S, and assume there is an
r > 0 such that for each goal state s, it holds g(s.) > r+1.

Let o : T — T’ be an LTS homomorphism, and let T be
a bounded sub-TS of T, such that S := Sg U Sg form a
ball of radius r > 0 around a(sy), Le.,

S :={a(s) | s € S,cost*(a(sp), a(s)) < r}.

Assume that for each state s € S such that g(s) < r it
holds that g(s) = cost*(a(sg), a(s)). Then, up to the f-
layer r +1, A* with ao d expands the same nodes as A* with
the “improved” blind heuristic d."

Proof. We aim to show that for each s with g(s) < ritholds

fi(s) == g(s) +d(a(s) <r+1 <
fa(s) = g(s) +d(s) <7+ 1.

Since, there are no goal states within distance r 4+ 1 of sg
and we assume a unit-cost, we can write d(s) = 1 for each
s with g(s) < r+ 1. Thus, g(s) < riff fo(s) <r+ 1.

On the other hand,

fi(s) == g(s) + d(a(s))
=g(s) + 7+ d(s) — cost™(a(sp), a(s))
=g(s)+r+1—g(s)=r+1.

Thus, g(s) < riff fi(s) = r + 1. Hence, the result follows
from the layer-wise expansion of A*. O

The key insight here is that d uses the lowest cost to a
fringe state in the projection, plus the heuristic estimate at
the fringe, to improve estimates within the explored region.
The heuristic remains admissible and preserves consistency.
The example demonstrates that o o d can avoid expanding
certain sub-optimal states that a blind heuristic would ex-
plore. Furthermore, under restrictive assumptions (i.e., unit-
cost, no goal within a bounded depth), our proposition shows
that A* guided by « o d expands exactly the same states up
to a certain cost-layer as when guided by the improved blind
heuristic d. This suggests that early-stage search behavior
with refined PDBs mimics blind search, but gains potential
advantages beyond the initial layers.

'The expansions happen not necessarily in the same order.

Figure 2: Illustration of a setting where detected dead ends
are not reported by the PDB heuristic due to the partial ex-
pansion of the projection.

Handling Unexplored States

Using a partially explored projection as a PDB heuristic does
not guarantee that for every concrete state s generated dur-
ing the search we have reached the abstract counterpart s|p,
i.e., the lookup of the heuristic value for s can fail. If that
happens, a simple backup strategy is to resort to the blind
heuristic (e.g., the minimum action cost for non-goal states).
We suggest two alternatives that are strictly more informa-
tive: (1) an admissible heuristic computed for s|p, which
we call the failed-lookup heuristic, and (2) an abstraction
refinement that extends the projection by invoking another
exploration from s|p and augmenting the goal distances.
Employing a failed-lookup heuristic is particularly im-
portant when dead ends are present and the abstract state
space was constructed using a heuristic capable of detecting
dead ends. In such settings, detected dead ends are never
expanded by the adapted A* algorithm. This implies that
only a small fraction of the states will be explored in ab-
stract spaces containing dead ends. Without a failed-lookup

heuristic, h(s) reports the minimum action cost if s| , corre-
sponds to an unexplored state. This results in misleadingly
optimistic heuristic values and in the search wasting effort in
regions filled with dead ends that were actually identified as
such. See Figure 2 for an illustration. While dead ends can be
detected on the fringe of the sub-transition system, this does
not necessarily lead to pruning of the entire dead end region.
In the example, we have a state sy that is reached in the pro-
jection and identified as a dead end by the heuristic h. Al-
though we can prune sy and avoid its expansion, it is not the
only entry point to the dead end region. In particular, state s;
is not a dead end, but it lies on the fringe and has paths both
to a goal state and into the dead end region. Thus, we cannot
prune s, and, unless we use a failed-lookup heuristic capa-
ble of detecting dead ends for states outside the PDB, the
search may still reach and explore the dead end region.
When extending the projection, s|p is treated as a tem-
porary abstract initial state, and the abstract state space is
explored as if it was from the original initial state, updat-
ing heuristic values for all visited states up to a predefined
limit on the number of abstract states. Previously explored
abstract states retain their existing heuristic values. Note that
this form of failed-lookup handling can introduce inconsis-
tencies into the heuristic, as explained in detail below.

Figure 3: Illustration to indicate the importance of a backup
heuristic hp for failed PDB lookups.

Putting the Pieces Together

Our proposed framework integrates three distinct admissi-
ble heuristics within a PDB: the exploration heuristic /gy,
which guides the abstract state-space exploration toward
goal states; the fringe heuristic hg,, which refines distance
estimates for fringe states Sp beyond the minimal action
cost; and the failed-lookup heuristic /p;, serving as a fall-
back for states s whose abstract counterparts s|p were not
reached (s|p ¢ Sg U Sp). We denote heuristic instantia-
tions by XYZ, where X, Y, and Z correspond respectively to
hex, hpr, and hg. Each position takes one of the following
heuristics: B for the blind heuristic, L for the LM-cut heuris-
tic (Kuroiwa et al. 2022), and, by slight abuse of notation,
E for the state-space extension used exclusively as hp. The
baseline by Gnad et al. (2025) is represented by BBB.

We next analyze our framework formally, leading to the
conclusion that only certain instantiations are meaningful.
For this purpose, we introduce a wildcard character X in
an instantiation name (e.g., BXB) to signify the use of an
arbitrary admissible heuristic other than the blind heuristic.
For instance, BXB denotes an instantiation where the blind
heuristic is used for both hg, and hg, while an unspecified
heuristic is used for Ag,.

For the A* search, the f-value of state s is given as:

R

where Y is the PDB heuristic using Y on the fringe.
Instantiations XBB and BXB will generally result in lim-
ited overall performance compared to the baseline BBB.

Proposition 3. Let BBB and BXB be two instantiations for
the same pattern P, where B is the blind heuristic and X
is an admissible heuristic that dominates B. For any two
concrete states s and s', where s ‘ p € SEUSE (the explored

or fringe sets) and o(s") is not in either of these sets, it holds:
fos8(s) > fees(s") = faxs(s) > foxa(s').

Yet, the converse implication, fgxp(s) > fpxp(s’) =
feB(8) > fBBB(S), does not generally hold.

Proof. The construction of the pattern database heuristic,
i.e., the expansion of abstract states, is determined by the
hgx heuristic. Since both BBB and BXB use the blind heuris-
tic for hgy, they expand the exact same abstract states.
Consider the states s and s’ as specified in the claim. For
state a(s’) &€ Sg U Sp, the f-value is determined by the hg

Expansions Runtime

—
o
<
[
—
(=)
@
[

LLE (lower for 48)
2
T
LLE (lower for 96)
5
T

—
o
|
—
[
—
o
|
-
[

© m—
107! 10® 107 10- 10t 108
LLB (lower for 10) LLB (lower for 166)

Figure 4: Per-instance comparison of PDB construction with
the LM-cut heuristic for exploration and fringe, without (x-
axis) and with (y-axis) refinement upon lookup failures. We
compare search-space size (left) and runtime (right).

heuristic. In both BBB and BXB instantiations, the hg heuris-
tic is the blind heuristic. So we have fgpp(s’) = fexs(s’).

For state a(s’) € Sg U Sp the f-value is determined
by the expanded states and the hp, heuristic. Since X rep-
resents an admissible heuristic which is generally more in-
formed (i.e., provides greater or equal heuristic values) than
the blind heuristic, it follows that fgpg(s) < fexs(s).

Combining these observations: Given fppp(s) >
feBB(8") (Premise 1). We know fgpgp(s’) = fxa(s’) (from
s'’s definition and hg). Substituting this into Premise 1 gives
feee(s) > fexs(s’). We also know faxp(s) > faeB(S).
Therefore, fexs(s) > feee(s) > fexs(s’), which implies
fexa(8) > fexs(s’). This proves the first implication.

For a counter argument, consider unit action cost and
state s with a(s) € Sp. Assume state s’ with a(s’) ¢
Sg U SF that is not a goal state, hence B(a(s')) = 1.
Assume fppp(s) = g(s) + Bla(s)) > feps(s) =
g(s") + B(a(s)). For the same states, we have fpxp(s) =
g(s) + B(a(s)) and fpxp(s’) = g(s') + X (a(s")). Since
X(a(s")) > B(a(s')), the converse does not necessarily
follow. O

This shows that, for BXB instantiations, states whose ab-
stract projections are already in Sr U SF tend to have higher
h-values than those that are not. This occurs because hg is
identical in both BXB and BBB, while hg, in BXB is more in-
formed. As aresult, A* in the concrete space tends to prefer
states with failed lookups (i.e., those not in Sg U SF), lack-
ing any search guidance. This illustrates a general weakness
of using a blind hg, as illustrated in Figure 3. Here, con-
sider a BXB instantiation where the PDB uniformly explores
a ball around sg|p of some radius r, and then computes the
heuristic X on the fringe of this ball. For all failed lookups,
the PDB heuristic reports the “blind” heuristic value. Con-
sider two fringe states s; and so such that X (s1) > X(s2).
Suppose there are no goal states in the vicinity of so, but
the heuristic X is mistaken and reports a larger value for s;
than for so. In the concrete state space, we have f(s1) =
g(s1) + X(s1) > f(s2) = g(s2) + X (s2). Since all failed
lookups fall back to the blind heuristic, it follows that all
descendants s” of sy with g(s') < X (s1) — X (s2) will be

Expansions Runtime

© 07 |- 8

0 o o10®

S e o® fis

—_ -

ﬂ; 103 |- ® ® g 10t

3 =

— — —1

a3 3 10

3 10 3® -

107t 102 107 107t 10t 10®

BBB (lower for 14) BBB (lower for 229)
Figure 5: Per-instance comparison of PDB construction be-
tween BBB (x-axis) and LLL (y-axis). We compare search-
space size (left) and runtime (right).

explored before A* proceeds to sy.

XBB instantiations introduce another issue. When an in-
formed heuristic is used only for hgy, abstract dead ends
may not be sufficiently explored or marked. If a concrete
dead end state is projected to such an abstract state during
search, the blind hg may return a low value, failing to report
the dead end and causing unnecessary exploration. This can
be mitigated by using a more informed hp;.

Finally, instantiations such as BBE can lead to inconsis-
tencies. Suppose a state s is a successor of a non-goal state
in Sg, where hg, assigns minimal cost due to being blind.
If the true goal distance from s exceeds this value, h(s) will
only correctly reflect this if all of its successors are fully ex-
panded in the abstract space.

Experimental Evaluation

Our implementation is based on Numeric Fast Downward
(Aldinger and Nebel 2017), extending the planner by Gnad
et al. (2025). We conducted our experiments on a cluster
of Intel Xeon Gold 6130 CPUs using Downward Lab 8.2
(Seipp et al. 2017), adopting the runtime and memory limits
of 30 min and 8GiB from the recent International Planning
Competition (IPC) 2023 (Taitler et al. 2024). We use the
benchmark set as proposed by Gnad et al. (2025), consist-
ing of the IPC’23 and benchmarks from the literature (Scala,
Haslum, and Thiébaux 2016; Scala et al. 2017, 2020; Shleyf-
man, Kuroiwa, and Beck 2023; Benyamin et al. 2024). Code,
experimental data and an extended version of the paper are
publicly available (Fritzsche et al. 2025).

Experimental Setup As general baselines we compare
our approach to blind search (B) and A* with the LM-cut
heuristic (L) (Kuroiwa et al. 2022) and Hrmax (H) (Scala
et al. 2020). We include the plain numeric PDBs without our
enhancements for comparison (BBB) (Gnad et al. 2025).
For all PDB-based approaches, we build on the pat-
tern collection generation called iPDB, which uses a hill-
climbing approach and combines multiple PDBs using the
canonical heuristic (Haslum et al. 2007). We limit the size
of candidate patterns by an approximated domain-size prod-
uct of 100.000, adopting the mechanism suggested by Gnad
et al. (2025) to approximate this range using the explicit nu-

Domain #| B H L | BBB | BBE LLE | LLB BBL BLL LLL
delivery 20 2 2 3 2 2 2 2 2 2 2
drone 20 3 3 3 4 4 4 4 4 4 4
expedition 20 5 6 6 6 6 6 6 6 6 6
« farmland-ipc23 15 4 15 15 8 8 15 15 15 15 15
& hydropower 20 9 11 11 9 8 1 9 8 10 10
Q mprime 20 6 9 15 12 12 12 12 12 12 12
= rover-ipc23 20 4 4 4 4 4 4 4 4 4 4
sailing-ipc23 20 0 5 8 0 0 0 0 0 0 0
sugar 20 2 2 12 3 3 3 3 3 3 3
zenotravel-ipc23 20 6 6 8 6 6 6 6 6 6 6
counters 20 3 4 5 5 5 5 5 5 5 5
counters-sym 11 2 3 11 8 8 8 8 9 8 9
depots 20 4 5 7 7 7 7 7 7 7 7
depots-sym 20 4 4 7 6 6 6 6 6 6 6
o farmland 30 12 30 30 12 12 30 26 30 30 30
5 fn-counters-small 8 6 7 7 7 7 7 7 7 7 7
B forestfire 20 10 10 11 10 10 10 10 10 10 10
2 minecraft-pogo 20 | 14 0 5 18 18 17 18 18 17 17
£ minecraft-sword 20| 20 0 9 20 20 20 20 20 20 20
£ petri-net 20 2 6 8 9 9 8 8 9 9 8
plant-watering 63 63 63 63 63 63 63 63 63 63 63
rover-unit 20 4 4 7 6 6 6 6 6 6 6
sailing 40 10 28 40 15 15 18 15 17 17 18
satellite 20 1 1 2 2 1 1 1 2 2 2
zenotravel 23 6 7 13 10 10 9 10 10 10 10
others] 1 1 1| 1| 1 1| 1 1 1 1
> 622 | 203 236 311 | 253 || 251 269 | 272 280 280 281

Table 1: Coverage (# solved instances) of the baseline planners (columns “B”-“BBB”) and instantiations of our framework.

meric interval (ENI) (Shleyfman, Gnad, and Jonsson 2023).
For every pattern, we generate 10.000 unique states when
exploring the abstract state space. We limit our pattern col-
lection size by the overall of 1 million unique abstract states.
The limit of the hill-climbing procedure for iPDB is 900
sec. Gnad et al. (2025) showed that iPDB is mostly supe-
rior to systematic PDBs (Pommerening, Roger, and Helmert
2013). In preliminary experiments, we adapted the genetic
algorithm by Franco et al. (2017), but with limited success.

For the PDB heuristics, we transform the SNP encoding
generated with the translator component of numeric Fast
Downward to the RT formalism required for the heuristics
(we refer to Gnad et al. 2025, for the details).

In our new framework, we experiment with different com-
binations, all of which are based on the LM-cut heuristic or
the extension of the projection.

Results Discussion

Table 1 shows the number of solved instances per domain.
Domains with equal performance across all configurations
are grouped under “others”. Baselines appear on the left, our
configurations on the right. All variants except BBE outper-
form the BBB baseline, confirming the effectiveness of our
enhancements. For BBE, it turns out that the overhead of fur-
ther exploring the projection from abstract states where the
lookup fails, in combination with doing so in a blind way,
does not pay off. This is confirmed by Figure 4, the reduced
search space does not yield runtime gains.

LLB, which uses LM-cut to guide the search in the ab-
straction, improves coverage by +19 over BBB, support-
ing our hypothesis that reaching abstract goals yields better
heuristics. Adding the failed-lookup heuristic on top (LLL)
adds 9 more instances. Figure 5 compares LLL with BBB
on expansions (until the last f-layer) and runtime. LLL re-
quires fewer expansions except in Minecraft, where LM-cut
is ineffective due to a large branching factor. The runtime
overhead in this domains is noticeable for easy instances,
but many others are solvable only by LLL.

Conclusion

We generalize an established framework that adapts PDB
heuristics to simple numeric planning and address the chal-
lenge of handling an infinite abstract state space by propos-
ing several solutions. Our approach integrates heuristics in a
novel way, incorporating techniques such as numeric LM-
cut (Kuroiwa et al. 2022) within the abstraction to guide
PDB exploration toward promising regions and improve
goal-distance estimates.

Empirical results on common benchmarks show that our
methods significantly improve over the existing variant of
numeric PDBs. A major question for future work is how to
adapt cost partitioning techniques from classical planning to
admissibly combine multiple heuristics. This is a key com-
ponent in classical planning, without which PDBs are not
competitive with state-of-the-art planners.

Acknowledgements

This work was partially supported by the Wallenberg
Al, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. The
computations were enabled by resources provided by the
National Academic Infrastructure for Supercomputing in
Sweden (NAISS), partially funded by the Swedish Research
Council through grant agreement no. 2022-06725. Alexan-
der Shleyfman’s work was partially supported by ISF grant
2443/23.

References

Aldinger, J.; and Nebel, B. 2017. Interval Based Relax-
ation Heuristics for Numeric Planning with Action Costs.
In SOCS, 155-156.

Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial Pat-
tern Databases. In SARA, 20-34.

Bickstrom, C.; and Nebel, B. 1995. Complexity Results for
SAS™ Planning. Computational Intelligence, 11(4): 625—
655.

Benyamin, Y.; Mordoch, A.; Shperberg, S.; Piotrowski, W.;
and Stern, R. 2024. Crafting a Pogo Stick in Minecraft with
Heuristic Search. In SOCS, 261-262.

Cardellini, M.; Giunchiglia, E.; and Maratea, M. 2024. Sym-
bolic Numeric Planning with Patterns. In AAAI, 20070-
20077.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. JAIR, 46: 343-412.

Culberson, J. C.; and Schaeffer, J. 1996. Searching with
Pattern Databases. In Proceedings of the Eleventh Bien-
nial Conference of the Canadian Society for Computational
Studies of Intelligence (CSCSI-96), volume 1081 of LNAI,
402-416. Springer-Verlag.

Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318-334.

Edelkamp, S. 2002. Symbolic Pattern Databases in Heuristic
Search Planning. In AIPS, 274-283.

Eifler, R.; and Fickert, M. 2018. Online Refinement of
Cartesian Abstraction Heuristics. In SOCS, 46-54. AAAI
Press.

Eyerich, P.; Mattmiiller, R.; and Roger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In ICAPS, 130-137.

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. JAIR, 22: 279-318.

Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017.
On creating complementary pattern databases. In IJCAI,
4302-4309.

Fritzsche, M.; Gnad, D.; Gruntov, M.; and Shleyfman,
A. 2025. Code and experiment data of the AAAI 2026
paper “Managing Infinite Abstractions in Numeric Pat-
tern Database Heuristics”. https://doi.org/10.5281/zenodo.
17592540.

Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. ALJ, 172(8-9): 899-944.

Gnad, D.; Alon, L.-0.; Weiss, E.; and Shleyfman, A. 2025.
PDBs Go Numeric: Pattern-Database Heuristics for Simple
Numeric Planning. In AAAL

Gnad, D.; Helmert, M.; Jonsson, P.; and Shleyfman, A.
2023. Planning over Integers: Compilations and Undecid-
ability. In ICAPS, 148-152. AAAI Press.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100-107.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admissi-
ble Heuristics for Domain-Independent Planning. In AAAI,
1163-1168.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In AAAI,
1007-1012.

Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In AIPS, 303—
312.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AlJ, 173: 503-535.

Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
JAIR, 20: 291-341.

Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and Furcy,
D. 2006. Maximizing over Multiple Pattern Databases
Speeds up Heuristic Search. AlJ, 170(16—17): 1123-1136.

Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple Pattern Databases. In ICAPS, 122—-131.

Illanes, L.; and Mcllraith, S. A. 2017. Numeric Planning
via Abstraction and Policy Guided Search. In IJCAI, 4338
4345.

Katz, M.; and Domshlak, C. 2009.
Databases. In ICAPS, 186—193.

Kuroiwa, R.; Shleyfman, A.; and Beck, J. C. 2023. Extract-
ing and Exploiting Bounds of Numeric Variables for Op-
timal Linear Numeric Planning. In ECAI volume 372 of
Frontiers in Artificial Intelligence and Applications, 1332—
1339.

Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2022. The LM-Cut Heuristic Family for
Optimal Numeric Planning with Simple Conditions. J. Artif.
Intell. Res., 75: 1477-1548.

Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In IJCAI, 4787-4793.

Libkin, L. 2004. Elements of Finite Model Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.

2018. Linear and Integer Programming-Based Heuristics for
Cost-Optimal Numeric Planning. In AAAI, 6254-6261.

Structural-Pattern

Pommerening, F.; Roger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
1JCAI 2357-2364. IJICAI/AAAL

Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In 1J-
CAI, 4384-4390.

Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In IJCAI, 3228-3234.

Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. JAIR, 68: 691-752.

Scala, E.; Ramirez, M.; Haslum, P.; and Thiébaux, S. 2016.
Numeric Planning with Disjunctive Global Constraints via
SMT. In ICAPS, 276-284.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. AlJ, 166(1-2): 194-253.

Shleyfman, A.; Gnad, D.; and Jonsson, P. 2023. Structurally
Restricted Fragments of Numeric Planning — a Complexity
Analysis. In AAAI, volume 37, 12112-12119.

Shleyfman, A.; Kuroiwa, R.; and Beck, J. C. 2023. Sym-
metry Detection and Breaking in Linear Cost-Optimal Nu-
meric Planning. In Koenig, S.; Stern, R.; and Vallati, M.,
eds., ICAPS, 393-401. AAAI Press.

Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fiser, D.;
Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; Segovia-Aguas, J.; and Seipp, J. 2024. The
2023 International Planning Competition. Al Mag., 45(2):
280-296.

