

Managing Infinite Abstractions in Numeric Pattern Database Heuristics

Markus Fritzsche¹, Daniel Gnad^{1,2}, Mikhail Gruntov³, Alexander Shleyfman⁴

¹Linköping University, ²Heidelberg University, ³Technion, ⁴Bar-Ilan University

Setting: Simple Numeric Planning (SNP)

- Extension of classical planning with numeric variables.
- Numeric planning task: $\langle V_p \cup V_n, A, s_0, G \rangle$ with propositional (V_p) and numeric (V_n) variables.
- Actions have propositional and numeric preconditions/effects; in SNP effects are simple updates $x := x + c$.
- Finite set of numeric conditions $\bar{\Psi}_n = G_n \cup \{\psi \mid \psi \in \text{pre}_n(a), a \in A\}$ where each ψ has the form $\sum_{x \in V_n} w_x^\psi x \geq w_0^\psi$.

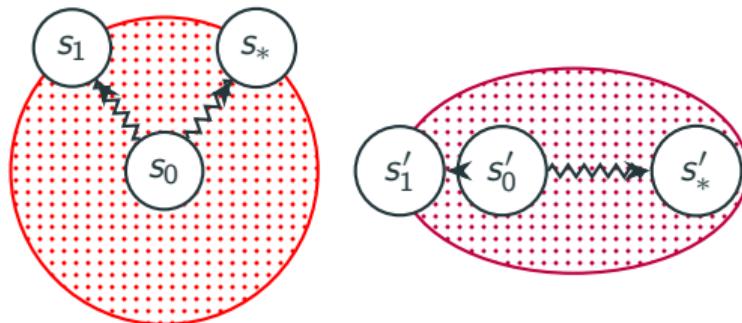
Pattern Databases (PDBs) — Classical Planning

- Choose a pattern $P \subseteq V$ and projection $\Pi_P : S \rightarrow S|_P$ (restrict state to variables in P).
- The PDB stores exact optimal distances in the projected transition system:

$$h_{\text{PDB}}(s) = h_P^*(\Pi_P(s))$$

- Properties: precomputed by backward/regression search, admissible, and combined across patterns by **max** or additive pattern collections.

Pattern Databases (PDBs) — Numeric Planning


- Numeric variables have (in general) infinite domains, so a direct projection yields an infinite abstract transition system.
- Practical finite-fragment recipe: explore a finite fragment from the abstract initial state (expanded nodes S_E , fringe S_F) via uninformed search (UCS).
- Estimate for $s \in S_E \cup S_F$:

$$h(s) = \min_{s' \in S_F} \{ \text{cost}^*(s, s') + d(s') \}, \quad d(s') = \begin{cases} 0 & s' \in S_* \\ \text{min action cost} & \text{otherwise} \end{cases}$$

- Use a min-action-cost fallback for states not in the fragment; admissibility follows from the fragment-to-concrete homomorphism.

- Pattern Databases (PDBs) are state-of-the-art admissible heuristics in classical planning, but currently they underperform on numeric benchmarks (coverage lags behind LM-cut).
- We hypothesize two root causes: (1) abstractions explore the wrong regions of the numeric state space, and (2) many lookups are uninformed or fail, producing weak heuristic estimates.
- **Contribution:** adapt numeric PDB construction and lookup strategies to improve coverage and informativeness on simple numeric planning tasks, shrinking the gap to LM-cut.

Why Exploring the Right Regions Matters

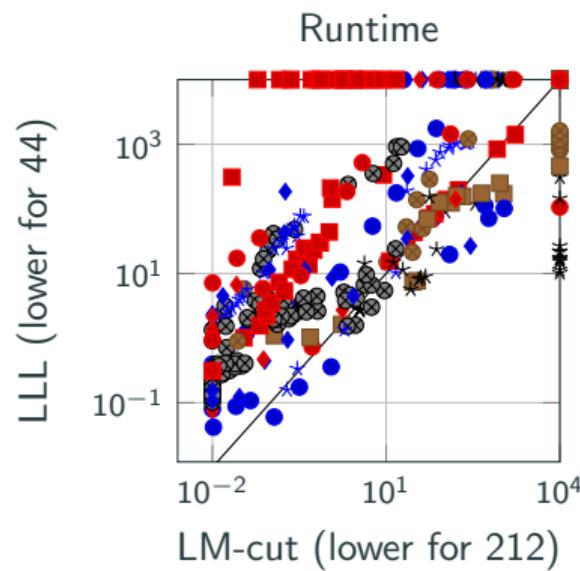
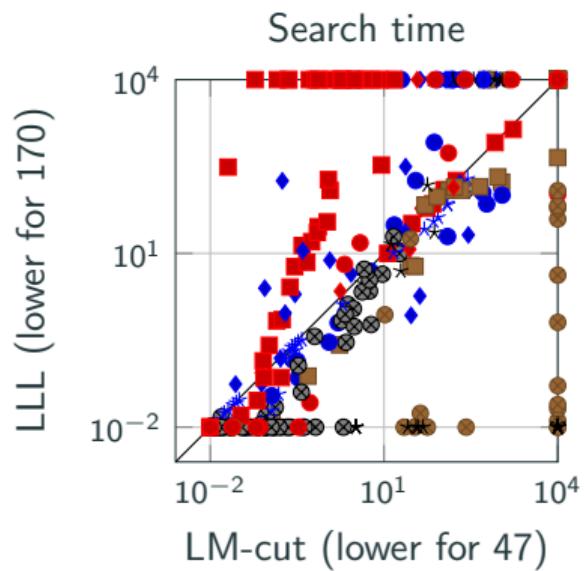
Figure 1: Illustration of heuristic values for s_0 and s'_0 in uninformed (left) vs informed (right) partial expansion.

- Exploring without an uninformed expansion (UCS) causes many expanded states in S_E to be close to fringe non-goal states (right panel), reducing the “padding” around explored regions.
- Consequence: $h(s)$ often reports distance to the fringe rather than true goal distances — compare the goal distances of s_0 and s'_0 between the left and right images.

The XYZ Framework

- **XYZ naming:** choice of heuristics for exploration, fringe, and failed lookup.
- **Guided expansion:** run A*-style exploration with admissible h_{Ex} , stopping when a generation bound B is reached.
- **Fringe refinement:** for expanded states $s \in S_E$ we use the fringe heuristic

$$\tilde{h}(s) = \min_{s' \in S_F} \{ \text{cost}^*(s, s') + h_{\text{Fr}}(s') \} \quad (s \in S_E),$$



replacing the prior min-action-cost fallback and yielding more informative estimates.

- **Failed lookups:** use h_{Fl} for states whose projection was not reached ($s|_P \notin S_E \cup S_F$).
- **Notation:** an instance is written XYZ where each letter selects the variant for h_{Ex} , h_{Fr} , h_{Fl} (e.g., BBB baseline).

Coverage

	Domain	#	B	L	BBB	LLB	BBL	BLL	LLL
IPC 2023	delivery	20	2	3	2	2	2	2	2
	drone	20	3	3	4	4	4	4	4
	expedition	20	5	6	6	6	6	6	6
	farmland-ipc23	15	4	15	8	15	15	15	15
	hydropower	20	9	11	9	9	8	10	10
	mprime	20	6	15	12	12	12	12	12
	rover-ipc23	20	4	4	4	4	4	4	4
	sailing-ipc23	20	0	8	0	0	0	0	0
	sugar	20	2	12	3	3	3	3	3
	zenotravel-ipc23	20	6	8	6	6	6	6	6
from literature	counters	20	3	5	5	5	5	5	5
	counters-sym	11	2	11	8	8	8	8	9
	depots	20	4	7	7	7	7	7	7
	depots-sym	20	4	7	6	6	6	6	6
	farmland	30	12	30	30	30	26	30	30
	fn-counters-small	8	6	7	7	7	7	7	7
	forestfire	20	10	11	10	10	10	10	10
	minecraft-pogo	20	14	5	18	17	18	17	17
	minecraft-sword	20	20	9	20	20	20	20	20
	petri-net	20	2	8	9	8	8	9	9
	plant-watering	63	63	63	63	63	63	63	63
	rover-unit	20	4	7	6	6	6	6	6
	sailing	40	10	40	15	18	15	17	17
	satellite	20	1	2	2	1	1	2	2
	zenotravel	23	6	13	10	9	10	10	10
others		72	1	1	1	1	1	1	1
\sum		622	203	311	253	269	272	280	281

Search vs Total Time

Takeaways

- Combining numeric PDB generation with informed heuristics to explore the right states and increase informedness using a failed lookup heuristic narrows the gap between LM-cut and PDBs.
- However, the gap is not closed yet; further research is required to finally close it.