
Managing Infinite Abstractions in Numeric Pattern Database Heuristics
Markus Fritzsche1, Daniel Gnad1,2, Mikhail Gruntov3, Alexander Shleyfman4

1Linköping University, 2Heidelberg University, 3Technion, 4Bar-Ilan University

(Simple) Numeric Planning

Finite Domain Representations with Numbers
A Numeric Planning task is the tuple ⟨Vp ∪ Vn, A, s0, G⟩

• Vp: classic variables with finite domains
• Vn: numeric variables with values in Q
• A: finite set of actions of the form ⟨pre, eff, cost⟩, where pre = prep ∪ pren

(propositional and numeric conditions), and eff = effp ∪ effn (propositional
and numeric effects)

• s0: initial state
• G = Gp ∪Gn: goal conditions

Simple Numeric Planning (SNP)
A state s is a tuple ⟨sp, sn⟩ where s is a full assignment over the variables in
Vn ∪ Vp.

• Define Ψ̄n := Gn ∪ {ψ | ∃a ∈ A,ψ ∈ pren(a)} to be the finite set of all
numeric conditions. Each condition ψ in Ψ̄n has the form

ψ :
∑
x∈Vn

wψx x ≥ wψ0 .

• The numeric task is called simple since it has only simple effects of the form
(x := x+ cax) where cax ∈ Q.

Motivation. Current abstraction-based admissible heuristics (e.g., numeric PDBs and iPDB variants) still lag behind the state-of-the-art LM-cut heuristic on several
numeric benchmarks. We aim to improve abstraction-based admissible heuristics for numeric planning by adapting and extending pattern database techniques to narrow
the gap. Further research is required to finally close the gap.

PDBs for Simple Numeric Planning

PDBs (Classical)
• Let P ⊆ V be a pattern and let ΠP : S → S|P denote projection, i.e.,

restriction of states to a subset of variables.
• The PDB heuristic is the perfect heuristic in the projection:

hPDB(s) = h∗
P (ΠP (s))

• Notes: admissible (optimal plans with A∗), precomputed by back-
ward/regression search, and combined by max or by sum when using pattern
collections.

PDBs (Numeric)
• Projecting tasks with numeric variables typically yields an infinite abstract

transition system since numeric variables have infinite domains.
• Practical recipe: grow a finite fragment from the abstract start via uniform-

cost search; let SE be expanded nodes and SF the fringe.
• Finite-fragment heuristic (for s ∈ SE ∪ SF ):

h(s) = min
s′∈SF

{ cost∗(s, s′)+d(s′) }, d(s′) =

{
0 s′ ∈ S∗

min action cost otherwise.

• Admissibility: distances in the (finite) image are lower bounds of concrete
distances (homomorphism argument; see Gnad et al., 2025).

• Many abstract states remain unexpanded: use min-action-cost fallback for
s /∈ SE ∪ SF .

Our Contribution
• A*: use exploration heuristic hEx to prioritize expansions (better than UCS

for partial fragments).
• Failed-lookup hFl: lightweight, robust fallback when a projection is missing.

s0

s1 s∗

s′
0s′

1 s′
∗

Figure 1: Illustration of heuristic
values for s0 and s′

0 in uninformed
(left) vs informed (right) partial
expansion.

Goal

Dead
End

s∗

s0

s∅

s1

s′
∅

s2

Figure 2: Detected dead ends
can be missed by a partially-
expanded PDB fragment.

Experimental Results

The XYZ Naming Scheme

• Stop A* exploration the abstract state space, guided by an exploration heuris-
tic hEx, when a generation bound B is reached.

• For expanded states s ∈ SE we use a fringe-based refinement:

h̃(s) = min
s′∈SF

{ cost∗(s, s′) + hFr(s′) } (s ∈ SE),

replacing the prior min-action-cost fallback for unexpanded successors. Nam-
ing: This defines the fringe heuristic hFr used below in the XYZ naming.

• A failed-lookup heuristic hFl is used for states whose projection was not
reached (s|P /∈ SE ∪ SF ).

• Notation: an instance is written as XYZ, where X, Y, Z select which heuristic
variant is used for hEx, hFr, hFl (e.g., BBB baseline).

Coverage Results (Summary)

Domain # B L BBB LLB BBL BLL LLL

IP
C

20
23

delivery 20 2 3 2 2 2 2 2
drone 20 3 3 4 4 4 4 4
expedition 20 5 6 6 6 6 6 6
farmland-ipc23 15 4 15 8 15 15 15 15
hydropower 20 9 11 9 9 8 10 10
mprime 20 6 15 12 12 12 12 12
rover-ipc23 20 4 4 4 4 4 4 4
sailing-ipc23 20 0 8 0 0 0 0 0
sugar 20 2 12 3 3 3 3 3
zenotravel-ipc23 20 6 8 6 6 6 6 6

fro
m

lit
er

at
ur

e

counters 20 3 5 5 5 5 5 5
counters-sym 11 2 11 8 8 8 8 9
depots 20 4 7 7 7 7 7 7
depots-sym 20 4 7 6 6 6 6 6
farmland 30 12 30 30 30 26 30 30
fn-counters-small 8 6 7 7 7 7 7 7
forestfire 20 10 11 10 10 10 10 10
minecraft-pogo 20 14 5 18 17 18 17 17
minecraft-sword 20 20 9 20 20 20 20 20
petri-net 20 2 8 9 8 8 9 9
plant-watering 63 63 63 63 63 63 63 63
rover-unit 20 4 7 6 6 6 6 6
sailing 40 10 40 15 18 15 17 17
satellite 20 1 2 2 1 1 2 2
zenotravel 23 6 13 10 9 10 10 10

others 72 1 1 1 1 1 1 1∑
622 203 311 253 269 272 280 281

Table 1: B = Blind (UCS), L = LM-cut.


