

Managing Infinite Abstractions in Numeric Pattern Database Heuristics

Markus Fritzsche¹, Daniel Gnad^{1,2}, Mikhail Gruntov³, Alexander Shleyfman⁴

¹Linköping University, ²Heidelberg University, ³Technion, ⁴Bar-Ilan University

(Simple) Numeric Planning

Finite Domain Representations with Numbers

A **Numeric Planning task** is the tuple $\langle V_p \cup V_n, A, s_0, G \rangle$

- V_p : classic variables with finite domains
- V_n : numeric variables with values in \mathbb{Q}
- A : finite set of **actions** of the form $\langle \text{pre}, \text{eff}, \text{cost} \rangle$, where $\text{pre} = \text{pre}_p \cup \text{pre}_n$ (propositional and numeric **conditions**), and $\text{eff} = \text{eff}_p \cup \text{eff}_n$ (propositional and numeric effects)
- s_0 : **initial state**
- $G = G_p \cup G_n$: **goal conditions**

Motivation. Current abstraction-based admissible heuristics (e.g., numeric PDBs and iPDB variants) still lag behind the state-of-the-art LM-cut heuristic on several numeric benchmarks. We aim to improve abstraction-based admissible heuristics for numeric planning by adapting and extending pattern database techniques to narrow the gap. Further research is required to finally close the gap.

PDBs for Simple Numeric Planning

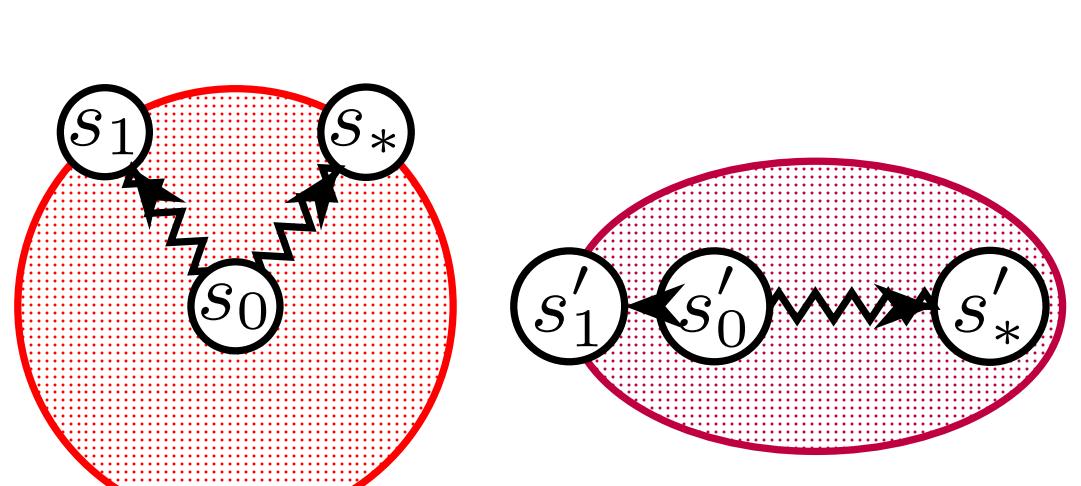
PDBs (Classical)

- Let $P \subseteq V$ be a pattern and let $\Pi_P : S \rightarrow S|_P$ denote projection, i.e., restriction of states to a subset of variables.
- The PDB heuristic is the perfect heuristic in the projection:

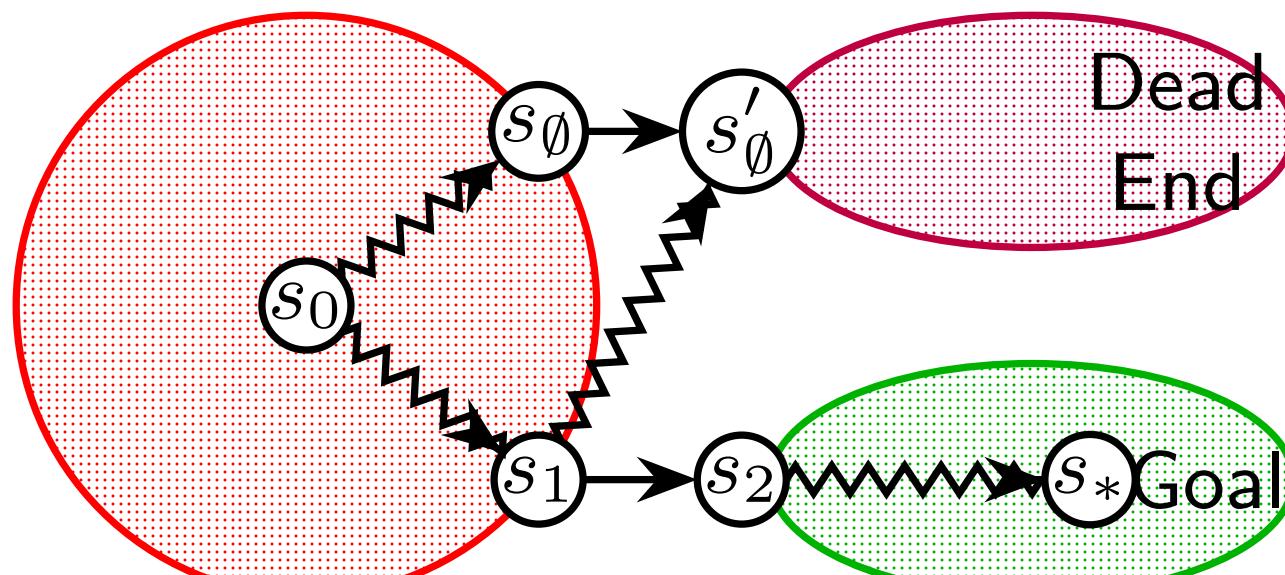
$$h_{\text{PDB}}(s) = h_P^*(\Pi_P(s))$$

- Notes: admissible (optimal plans with A^*), precomputed by backward/regression search, and combined by **max** or by **sum** when using pattern collections.

PDBs (Numeric)


- Projecting tasks with numeric variables typically yields an *infinite* abstract transition system since numeric variables have infinite domains.
- Practical recipe: grow a finite fragment from the abstract start via uniform-cost search; let S_E be expanded nodes and S_F the fringe.
- Finite-fragment heuristic (for $s \in S_E \cup S_F$):

$$h(s) = \min_{s' \in S_F} \{ \text{cost}^*(s, s') + d(s') \}, \quad d(s') = \begin{cases} 0 & s' \in S_* \\ \min \text{ action cost} & \text{otherwise.} \end{cases}$$


- Admissibility: distances in the (finite) image are lower bounds of concrete distances (homomorphism argument; see Gnad et al., 2025).
- Many abstract states remain unexpanded: use *min-action-cost* fallback for $s \notin S_E \cup S_F$.

Our Contribution

- A*: use exploration heuristic h_{Ex} to prioritize expansions (better than UCS for partial fragments).
- Failed-lookup h_{Fl} : lightweight, robust fallback when a projection is missing.

Figure 1: Illustration of heuristic values for s_0 and s_0' in uninformed (left) vs informed (right) partial expansion.

Figure 2: Detected dead ends can be missed by a partially-expanded PDB fragment.

Simple Numeric Planning (SNP)

A state s is a tuple $\langle s_p, s_n \rangle$ where s is a full assignment over the variables in $V_n \cup V_p$.

- Define $\bar{\Psi}_n := G_n \cup \{ \psi \mid \exists a \in A, \psi \in \text{pre}_n(a) \}$ to be the **finite** set of all numeric conditions. Each condition ψ in $\bar{\Psi}_n$ has the form

$$\psi : \sum_{x \in V_n} w_x^\psi x \geq w_0^\psi.$$

- The numeric task is called **simple** since it has only simple effects of the form $(x := x + c_x^a)$ where $c_x^a \in \mathbb{Q}$.

Experimental Results

The XYZ Naming Scheme

- Stop A* exploration the abstract state space, guided by an *exploration heuristic* h_{Ex} , when a generation bound B is reached.
- For expanded states $s \in S_E$ we use a *fringe-based* refinement:

$$\tilde{h}(s) = \min_{s' \in S_F} \{ \text{cost}^*(s, s') + h_{\text{Fr}}(s') \} \quad (s \in S_E),$$

replacing the prior *min-action-cost* fallback for unexpanded successors. *Naming*: This defines the *fringe* heuristic h_{Fr} used below in the XYZ naming.

- A failed-lookup heuristic h_{Fl} is used for states whose projection was not reached ($s|_P \notin S_E \cup S_F$).
- Notation: an instance is written as XYZ, where X, Y, Z select which heuristic variant is used for h_{Ex} , h_{Fr} , h_{Fl} (e.g., BBB baseline).

Coverage Results (Summary)

	Domain	#	B	L	BBB	LLB	BBL	BLL	LLL
IPC 2023	delivery	20	2	3	2	2	2	2	2
	drone	20	3	3	4	4	4	4	4
	expedition	20	5	6	6	6	6	6	6
	farmland-ipc23	15	4	15	8	15	15	15	15
	hydropower	20	9	11	9	9	8	10	10
	mprime	20	6	15	12	12	12	12	12
	rover-ipc23	20	4	4	4	4	4	4	4
	sailing-ipc23	20	0	8	0	0	0	0	0
	sugar	20	2	12	3	3	3	3	3
	zenotravel-ipc23	20	6	8	6	6	6	6	6
from literature	counters	20	3	5	5	5	5	5	5
	counters-sym	11	2	11	8	8	8	8	9
	depots	20	4	7	7	7	7	7	7
	depots-sym	20	4	7	6	6	6	6	6
	farmland	30	12	30	30	30	26	30	30
	fn-counters-small	8	6	7	7	7	7	7	7
	forestfire	20	10	11	10	10	10	10	10
	minecraft-pogo	20	14	5	18	17	18	17	17
	minecraft-sword	20	20	9	20	20	20	20	20
	petri-net	20	2	8	9	8	8	9	9
	plant-watering	63	63	63	63	63	63	63	63
	rover-unit	20	4	7	6	6	6	6	6
	sailing	40	10	40	15	18	15	17	17
	satellite	20	1	2	2	1	1	2	2
	zenotravel	23	6	13	10	9	10	10	10
others		72	1	1	1	1	1	1	1
\sum		622	203	311	253	269	272	280	281

Table 1: B = Blind (UCS), L = LM-cut.