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Abstract

While transformers excel in many settings, their application
in the field of automated planning is limited. Prior work like
PlanGPT, a state-of-the-art decoder-only transformer, strug-
gles with extrapolation from easy to hard planning problems.
This in turn stems from problem symmetries: planning tasks
can be represented with arbitrary variable names that carry no
meaning beyond being identifiers. This causes a combinatorial
explosion of equivalent representations that pure transformers
cannot efficiently learn from. We propose a novel contrastive
learning objective to make transformers symmetry-aware and
thereby compensate for their lack of inductive bias. Combin-
ing this with architectural improvements, we show that trans-
formers can be efficiently trained for either plan-generation
or heuristic-prediction. Our results across multiple planning
domains demonstrate that our symmetry-aware training effec-
tively and efficiently addresses the limitations of PlanGPT.

Code — https://github.com/mrlab-ai/symmetry-transformers
Data — https://doi.org/10.5281/zenodo.17591697
Appendix — https://arxiv.org/abs/2508.07743

1 Introduction

Transformer architectures (Vaswani et al. 2017) have revo-
lutionized various fields, from natural language processing
(e.g., Tunstall, Von Werra, and Wolf 2022) to computer vision
(e.g., Zhai et al. 2022). While leveraging transformers for
automated planning—complex reasoning tasks that require
sequential decisions—holds significant promise, transform-
ers specifically trained for this purpose remain rare. This is
surprising, given that solving automated planning problems
is inherently a sequence generation task: finding a sequence
of actions that leads from the initial state to a goal state.

We posit that a key challenge lies in the inherent ambiguity
of planning problem descriptions, combined with a lack of
inductive bias in pure transformer architectures. While pre-
trained large language models have been explored for solving
planning problems (e.g., Pallagani et al. 2022; Huang et al.
2022; Silver et al. 2024; Kambhampati et al. 2024; Huang,
Lipovetzky, and Cohn 2025), models trained from scratch for
generating plans from structured planning inputs are much
less common. A notable exception is PlanGPT (Rossetti et al.
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2024), a state-of-the-art GPT-2-based transformer (Radford
et al. 2019) trained to predict plans from formal problem
descriptions.

However, PlanGPT faces several limitations, particularly
concerning extrapolation to more challenging instances be-
yond its training set. A primary reason for this is that the
same planning problem can have a huge number of differ-
ent input representations since 1) objects can be given arbi-
trary names, since they only serve as identifiers and carry
no semantic meaning, and 2) the atoms of initial and goal
states can be ordered arbitrarily. Pure transformer architec-
tures must implicitly learn to ignore the differences between
such symmetric planning problems, which is challenging
and sample-inefficient. Furthermore, relying on an explic-
itly learned positional encoding can hinder generalization, as
the model may struggle with novel input sizes and unseen
positions.

We propose a symmetry-aware contrastive learning objec-
tive for transformers that explicitly accounts for the symme-
tries present in planning problems, guiding the model to learn
representations that are equivariant to these symmetries (see
Figure 1). While we focus on automated planning, this objec-
tive is applicable to any task using transformer tokens that
primarily represent identifiers. To address remaining symme-
tries in the input representation, we highlight the importance
of architectural choices, especially the omission of explicit
positional encodings. Furthermore, we use a compositional
tokenization scheme along with a transformer encoder, bene-
fiting from its inherent permutation-equivariance. We denote
our architectures as Symmetry-Aware Transformers (SymT).

We evaluate our approach in two different settings:
1) plan generation using an encoder-decoder (SymTED) and
2) heuristic prediction using an encoder-only transformer
(SymT"). Our experiments show that our symmetry-aware
contrastive learning objective and architectural innovations
significantly improve planning performance compared to the
PlanGPT baseline in three of the four evaluated domains, par-
ticularly in extrapolating to harder planning problems where
our models find plans for many tasks that PlanGPT fails to
solve. These findings showcase the importance of explicitly
addressing input symmetries to unlock the full potential of
transformers for automated planning and general reasoning
tasks that use variable names.
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Figure 1: [llustration of our contrastive loss and the encoder part of our architecture. First, (1) we create two copies of the state
and goal, each mapped into a token sequence, where each object is renamed to a random object token. While forwarding the
sequences to the encoder (2), all attention scores and hidden states are collected for loss computations. The first objective is
to align the attention scores for both samples in all attention-based modules (illustrated as equal attention scores). The second
objective is to align fractions of the hidden states for all pairwise-corresponding tokens (illustrated by matching colors in the
image). The output (3) can either be forwarded to the decoder (4b, Figure A.1 in the appendix) for next-token prediction or
to a readout module for heuristic computation (4a). When predicting heuristics, we sum the hidden state fractions used in the
contrastive loss and pass them through an MLP to obtain the prediction.

2 Background

Classical Planning. We consider classical planning, where
the world is fully-observable and actions are deterministic.
Formally, a (lifted STRIPS) planning problem (Fikes and
Nilsson 1971) is a tuple (P, O, A, T, G). Here, P is a finite
set of predicates that describe properties of the world (e.g., at,
in, connected) and the arity of predicate p € P is its number
of arguments. O is a finite set of objects that exist in the
world (e.g., pkgl, truck3, loc2). Each object has a type (e.g.,
Package, Truck, Location). Using predicates and objects, we
form (ground) atoms, which are basic propositions about
the world (e.g., at(pkgl, loc2)). A state is a set of ground
atoms that are true in a given situation and the initial state 7
describes which atoms are true initially. We denote the set of
all possible states by S. An atom can also contain variables
(e.g., at(?pkg, ?loc)), which act as placeholders for objects.
Such lifted atoms are used within action schemas A € A,
which are templates for actions in the world. Each action
schema A € A consists of a precondition pre(A), an add
list add( A) and a delete list del( A). The precondition pre(A)
is a set of atoms that must be true in a state for the action
to be applicable (e.g., at(?’pkg, ?loc) and at(?truck, ?loc)).
The add list add(A) is a set of atoms that will be true after
the action is applied (e.g., in(?pkg, ?truck)), and the delete
list del(A) is a set of atoms that will no longer be true after
the action is applied (e.g., at(?pkg, ?loc)). We ground an
action schema A to obtain a ground action by replacing all

variables in pre( A), add(A) and del( A) with objects from O,
respecting the types of the variables and objects. A ground
action a is applicable in state s if pre(a) C s, and applying it
results in the successor state s’ = (s \ del(a)) U add(a). The
goal G is the set of atoms that must be true simultaneously
to solve the planning problem. A sequence of ground actions
is a plan if it is applicable from Z and reaches a goal state
s* such that G C s*. Optimal planning is the task of finding
a plan with minimum length. Here, we focus on satisficing
planning, where any plan is acceptable, but short plans are
preferred. Finally, a heuristic h : S — Rar U oo is a function
estimating the cost of reaching a goal state from a given state.
Transformer Architectures for Sequence Generation. Pure
transformers (Vaswani et al. 2017) consist of an encoder and
a decoder, each consisting of a stack of multiple layers. The
input to each layer is a sequence of token embeddings, and
the output is a sequence of hidden state vectors. Both types
of layers consist of a multi-head attention (MHA) mecha-
nism and a position-wise feed-forward network (MLP), with
residual connections and optional layer normalization applied
after each sub-layer. Multi-head attention and self-attention
(A) are defined as

a;(Q, K) = softmax (QlKlT/\/@)
A’L(Q7K) V) :al(QaK)‘/z
MHA(QvKa V) = (Al(Q7K7 V)||AL(Q7K7 V))WOa

where Wo € R is a learned projection combin-



ing the L attention heads, and | denotes concatenation.
Q,K,V € RV*4 are the query, key, and value matrices,
with Q;, K;, V; € RN*dk the i-th head and dj, = d/L.

An encoder layer transforms the input X () € RV*4 into
the output X (1) € RN ¥4 a5 follows:

QW = X(i)Wg) KO = xOwD vy = xOp ()

X — x4 MHA®) (Q@, KO, V(i))
x G+l Xzstit) + MLP® (X‘Etzt))
Here, Wg )7 Wl((i), W‘(; ) € R9%4 gre learned weight matrices
specific for the ¢-th layer. We omit layer normalization for
simplicity. Optionally, a bias term can be added to the Q, K,
and V matrices, but we omit it here for simplicity.

We let E denote the output of the last encoder layer and

Y € RMXd the decoder input sequence. A decoder layer
transforms the input Y ) into the output Y +1) as follows:

= EW§;>2 V@

K. V)

QY — m)Wé ) KD
YO = “+MHA<>(Q“

= EW)

Yyt — y@ 4 ppp® ({/(z‘))

The first MHA module in the decoder masks out future
tokens using a triangular mask, ensuring that the model can
only attend to previous tokens in the sequence. A final MLP
predicts the probability of the next token in the sequence,
generating the output sequence one token at a time, referred to
as autoregressive generation. Typically, the decoder is trained
using the cross-entropy loss between the predicted token
probabilities and the true next token in the sequence. Decoder-
only variants, such as GPT-based models (e.g., Radford et al.
2018; Rossetti et al. 2024), focus solely on this sequential
generation process and use only self-attention.

Transformers for Automated Planning. The primary target
for Deep Learning in planning has been the prediction of
heuristics, where the model is trained to predict the estimated
cost of reaching the goal from a given state (e.g., Toyer et al.
2020; Stahlberg, Bonet, and Geffner 2022a; Chen, Trevizan,
and Thiébaux 2024). While transformers can be used for
predicting heuristics, most work has focused on the sequence-
to-sequence setting, where the model is trained to predict
a plan (sequence of actions) given a planning problem, i.e.,
a sequence of state and goal atoms (Pallagani et al. 2022;
Rossetti et al. 2024). Unlike architectures with strong built-in
assumptions about local connectivity such as graph neural
networks (GNNGs), transformers possess limited inductive
bias regarding sequence structure, relying heavily on data
to learn dependencies. Handling sequence order explicitly
requires positional information, commonly via positional
encodings, as the attention mechanism itself is permutation-
invariant. This data-driven nature and reliance on learned

positional signals pose a challenge, particularly when input
sequences can exhibit symmetries or structural variations not
explicitly encoded, as is the case in planning problems.

PlanGPT. PlanGPT (Rossetti et al. 2024) is a decoder-only
transformer architecture, trained to predict a plan for a given
planning problem. The model processes the planning prob-
lem by segmenting it into an input token sequence. The input
begins with a <start> token, followed by tokens represent-
ing the initial state, where each atom is decomposed into
predicate and argument tokens (e.g., atom at(truck5, loc3)
becomes the token sequence at, truck5, loc3). A <goal> to-
ken separates the state from the goal description, tokenized
similarly. The input sequence concludes with an <action>
token, signaling the start of the plan output. The output se-
quence comprises tokens representing the predicted actions,
also segmented into action name and argument tokens, until
the end-of-sequence token <EOS> is generated. An exam-
ple input-output sequence for a successfully-solved simpli-
fied Logistics tasks is: <start> at truck5 locl at pkgl locl
.. <goal> at pkgl loc2 <action> load truck5 pkgl locl
move truck5 locl loc2 unload truck5 pkgl loc2 <EOS>.
To handle symmetries induced by arbitrary object names,
PlanGPT randomizes object names based on their types from
a fixed vocabulary, e.g., truck5 becomes truck2. Training is
supervised using a standard next-token prediction objective,
namely cross-entropy loss. The authors use a training dataset
that contains multiple (suboptimal) plans for each planning
problem, allowing the model to learn from diverse solutions.

3 Limitations of PlanGPT

PlanGPT is trained solely to minimize the next-token pre-
diction loss. While this objective can in principle capture
symmetries, the combinatorial explosion of input representa-
tions leads to poor sample efficiency in practice.

Limitation 1: Object Assignment Equivariance. Object
names in planning are arbitrary and not intended to carry
additional semantics. However, PlanGPT uses a fixed vocab-
ulary of object names that are randomly assigned to objects
in the planning problem. Assume a single object type with
|O| objects in the training instance and |V| object names

in vocabulary V with |V| > |O|. Then there are %
different assignments of objects to vocabulary names. For
example a task with |O| = 8 objects and |V| = 8 names
yields (8 8), = 40320 different assignments, all describing

the same planning task. The model must learn to generalize
across all assignments to predict plans equivariant to these
name assignments, which is challenging without additional
objectives.

Limitation 2: Leaking Information in Object Names. To
mitigate Limitation 1, PlanGPT does not randomize object
names of all types. In the Visitall domain, for instance, ob-
jects of type Location encode grid coordinates, e.g., loc-x1-
¥2 corresponds to coordinate (1, 2). Instead of randomizing
these names, PlanGPT keeps the human-intended coordinates,
which the model can memorize, preventing generalization
to locations not seen during training. We demonstrate this in
Appendix B1.



Limitation 3: Atom Order Invariance. The order of atoms
in the initial and goal states of a planning problem is arbi-
trary. Assume there are |Z| atoms in the state and |G| atoms
in the goal description. Then there are |Z|! different atom
orders for the same state and |G|! different orders for the goal,
yielding |Z|! - |G|! equivalent representations for each object
assignment from Limitation 1. PlanGPT is a decoder-only
model that uses learned positional encodings to capture token
order in the input sequence. To make atom order consistent
across training instances, PlanGPT pre-sorts the atoms in the
state and goal descriptions before passing them to the model.
Nevertheless, the model may overfit to particular atoms being
overrepresented in specific positions, which can hinder gener-
alization to larger instances where atoms appear in different
positions.

Limitation 4: Learned Positional Encodings. In contrast
to state and goal atoms, the order of actions in a plan mat-
ters. Since transformer layers are permutation-equivariant
functions,' PlanGPT uses learned absolute positional encod-
ings (Radford et al. 2019) to capture the order of input tokens.
This is problematic for state and goal tokens due to Limi-
tation 3. Moreover, for any token type, learned positional
encodings imply that embeddings for unseen positions are
not learned, preventing generalization to harder planning
problems with more objects, which typically require longer
plans.

4 Symmetry-Aware Training

This section introduces our contrastive training objective and
architecture choices for overcoming the limitations identified
for PlanGPT. An overview of our objective and encoder-only
architecture for heuristics is shown in Figure 1, while our
encoder-decoder architecture for plan generation is shown in
Figure A.1 (Appendix A).

Addressing Atom Order Symmetries with Encoders
(Limitation 3). To directly address atom order symmetries,
we use an encoder-only architecture for heuristic prediction
and an encoder-decoder architecture for plan generation. The
encoder processes the state and goal atoms, while the decoder
predicts the action sequence forming the plan. By omitting
positional encodings in the encoder, its processing is inher-
ently permutation-equivariant with respect to the order of
input atom tokens. This makes its output representation inde-
pendent of their arbitrary order, yielding a |Z|! - |G|! reduction
of the input space.

PlanGPT tokenizes each atom into several tokens (pred-
icate and arguments), each mapped to an individual learn-
able embedding and requiring an ordering. As this is in-
compatible with an encoder without positional encodings,
we instead encode each atom as a single embedding. Let
E[token| denote the learnable embedding vector for a token.
For an atom p(o1,...,0,) grounded from predicate p and
objects o1, ..., 0,, we concatenate E[p], E[o1],..., Flon],
and m — n padding token embeddings to obtain a vector

'If we reorder the input sequence of tokens according to some
permutation, the output sequence will be the original output se-
quence reordered by the same permutation.

of fixed length |E[token]| - (1 + m), where m is the maxi-
mum predicate arity in the domain. We then pass this vector
through a single linear layer with parameters W and b to
produce the atom embedding T}, ,....0,.)"

Tp(or,....on) = WIE[PI|E[o1]] ... [Elon]| E[pad]| ... ) + b

This linear transformation maps the concatenated embedding
to the dimensionality of the atom embeddings used by the
encoder.> We further avoid splitting the input into state and
goal subsequences by introducing new goal-predicates for
every predicate. For example, the goal atom a#(truck3, loc2)
becomes goal_at(truck3, loc2). By converting all atoms into
these atom-level embeddings and operating without posi-
tional encodings, the encoder produces a representation that
is guaranteed to be permutation-equivariant in the order of
input atom tokens, addressing Limitation 3.

Addressing Positional Encodings in the Decoder
(Limitation 4). Predicting heuristic values only requires an
order-invariant state representation and is therefore suitable
for an encoder-only architecture without positional encod-
ings. In contrast, the order of actions in a plan is essential
and must be preserved. As noted in Limitation 4, learned
positional encodings can struggle to generalize to unseen
positions and thus limit extrapolation. To mitigate this issue
in the decoder, we omit positional encodings entirely. This
technique, NoPE, has shown successful length generalization
in various sequence-to-sequence tasks, including reasoning
problems (Kazemnejad et al. 2023).

Contrastive Training for Object Name Equivariance
(Limitations 1 and 2). To obtain robust object name as-
signment equivariance (Limitation 1), architectural changes
alone are insufficient. We therefore introduce a contrastive
training objective that encourages the model to learn repre-
sentations and processing patterns equivariant to arbitrary
object name assignments.

The core idea is to train on pairs of symmetric planning
problems. For a given problem, we generate two encoder in-
put sequences, X and X", that share the same underlying state
and goal structure but differ only in object names. We simi-
larly generate two corresponding decoder output sequences,
Y and Y, which are the plans predicted for X and X’, respec-
tively. Since X and X’ represent the same planning problem,
the model should process them in a way that reflects this
equivalence. We propose two renaming modes: Rename-One,
where object names in X are fixed across training instances
and object names in X' are randomized, and Rename-Both,
where object names in both X and X’ are randomized. We
then rename the objects in Y and Y’ accordingly. Prelimi-
nary experiments showed that Rename-One works better for
predicting heuristics, whereas Rename-Both is better for plan
generation. We encourage equivalent behavior across both
sequences using two complementary contrastive losses.

The first, the attention loss Ly, is motivated by the intu-
ition that if the model encodes the same algorithm regardless

“Directly encoding atoms with unique tokens, i.e., E[p(o1, . . .,
on)], would induce a massive vocabulary that scales poorly in the
number of supported objects, making it likely that some atoms are
rarely seen during training and causing poor generalization.



PlanGPT SymT® SymTP
# Parameters 117M ™ 16M

Table 1: Parameter counts for PlanGPT and our architectures.

of names, the attention scores between corresponding parts
of the input must match across layers and heads (Figure 1).
We define L, as:

#rows(a) #eols(a)

)2
Lu=5 Y 3 2, (o o)

aEAtr =1

Here, B denotes the batch size and Azt the set of all attention
modules across layers and heads. a and o are the attention
scores produced by the transformer for (X,Y) and (X', Y”),
respectively.

The second component, the hidden state loss L4, encour-
ages similarity directly in the learned token representations.
It is based on the idea that the hidden state vector for a token
should encode problem-structure features that are indepen-
dent of the specific object names. We compute Ly;q as:

1 #layers(H)
= O _ 0
Liig = B Z (H[ dy] H[ dk])

Here, H® denotes the hidden states after the [:th encoder
layer when H = X and the /:th decoder layer when H =Y,
and [:d] denotes a projection selecting the first dj, dimen-
sions of these hidden states.

We combine these with the standard prediction loss: L =
W1 * Lpred + w2 - Loy +w3 - Lyig. Here, Lpreq is the next-token
prediction loss (cross-entropy for plan generation, MSE for
heuristic prediction), and wy, ws, and ws are hyperparame-
ters controlling the importance of each component. We set
all w; to 1 in our experiments. Minimizing this objective
incentivizes the model to predict correct actions or heuris-
tic values while learning attention patterns and hidden state
features that are equivariant to object name variations. For
predicting heuristics with our encoder-only architecture, we

feed )\ X ] instead of 3~y XM to the readout MLP to

obtain the ﬁnal heuristic prediction (Figure 1). We addition-
ally address Limitation 2 by always fully randomizing object
names.

Summary of Our Architectures. We introduce two
symmetry-aware transformers: SymTF, an encoder-only ar-
chitecture for heuristic prediction, and SymTED, an encoder-
decoder architecture for plan generation. Inspired by the
GNNss of Stahlberg, Bonet, and Geffner (2022a), both share
weights across layers to reduce the number of parameters,
see Table 1. This is strictly necessary; otherwise Ly;q would
collapse to a trivial solution for slices of hidden states in non-
final layers. Both models use the contrastive loss described
above to ignore object names. Thus, our heuristic model is a
permutation-equivariant, shared-weight encoder, and our plan
generation model extends it with a shared-weight decoder
using NoPE positional encodings for length generalization.

5 Plan Generation

There are many ways to use transformer models to generate
plans, differing in how much they rely on the model versus
search techniques such as backtracking or cycle detection. To
assess the performance of the model rather than the search
strategy, we consider three minimally supportive plan gener-
ation strategies.

Greedy Plan Generation. At each step, we autoregressively
select the token with the highest predicted probability and
stop when an end-of-sequence token is generated.

Applicability-Filtered Plan Generation. This strategy again
autoregressively selects the most probable token, but first
masks the probabilities so that only tokens leading to an
applicable action are considered. For example, if the last two
tokens generated are move and roomA, then the model can
only generate a token corresponding to a room reachable
from roomA (e.g., roomB). Plan generation stops when the
simulated state satisfies the goal. This strategy dominates the
greedy plan generation strategy.

Regrounding Applicability-Filtered Plan Generation. This
strategy filters applicable actions as above. After each action
is generated, it is applied to update the state, and the model’s
input sequence is reset to this new state. Essentially, we
alternate between predicting (partial) plans of length one and
applying them. Again, we stop when the found state satisfies
the goal. This strategy does not dominate either of the two
above.

Greedy Heuristic Guidance. For the heuristic-prediction
model, we generate plans by computing the heuristic value
of each successor state and greedily selecting the action that
leads to the state with the lowest heuristic value. This process
is repeated until reaching a goal state.

For each strategy, we also stop plan generation early if the
model generates more than 500 tokens. Pseudo-code for all
strategies is in Appendix D.

6 Experiments, Results and Limitations

We now evaluate our symmetry-aware training, focusing on
training efficiency and extrapolation capabilities.

Experimental Setup. Since the benchmarks used by
PlanGPT are unsuitable for our purposes, due to significant
training/test set overlap (see Appendix B2) and a lack of
dedicated extrapolation data, we generated our own datasets
for four widely used planning domains with characteristics
relevant to PlanGPT’s limitations: Blocksworld, Gripper, Vis-
itall and Logistics. In Blocksworld, a set of blocks in multiple
towers must be stacked in a specific order into a single tower.
In Gripper, a robot with two grippers must move a set of balls
from one room to another. In Visitall, an agent must visit
all cells in a grid. In Logistics, a set of trucks and airplanes
must transport packages from their initial locations to their
goal locations. Appendix C details the domains, their PDDL
representations, and the size and distribution of problems for
each domain.

We train models for each combination of domain and archi-
tecture on an NVIDIA A100 GPU with 12 hours of training



PlanGPT - Decoder (baseline) SymTE (ours) SymTED (ours)

greedy applicable  regrounding greedy greedy applicable  regrounding
z validation .00+£.00 .00+£.00 .00=£.00 1.00=+.00 1.00+.00 1.00=+.00 .00=£.00
g interpolation .56+£.16 .56+£.16 .00=£.00 1.00+.00 1.00+.00 1.00+.00 1.00+.00
M extrapolation .00+£.00 .00+£.00 .00+£.00 .05+£.07 .07+.02 13+.05 .00£.00
5 validation .00£.00 .00+£.00 .00=£.00 1.00+.00 A7+£.24 1.00=+.00 1.00=+.00
§ interpolation .00+£.00 44+£.16 .00=£.00 .89+£.16 .67£.00 1.00+.00 1.00+.00
S extrapolation .00£.00 .00£.00 .00£.00 .02+.03 .00+£.00 .15+.06 79+.16
= validation .00£.00 14+.12 .00=£.00 1.00+.00 .33+£.09 .93+.04 .99+.02
= interpolation .05+.04 67+£.18 A1£.22 1.00+.00 .87£.01 99+.01 1.00+.00
> extrapolation .00£.00 .02+.02 .00£.00 42411 .00£.00 15+.05 64+.12
& validation .00+£.00 08=+.12 .00=£.00 .00=£.00 .00+£.00 .00+£.00 .00=£.00
g, interpolation .07+£.05 44+.09 19+.14 .11£.00 22431 .26£.29 22431
S extrapolation 00=+.00 .00=+.00 .00+.00 00=+.00 00=+.00 .00=+.00 .00+.00

Table 2: Normalized coverage scores [(u & o)] for all architectures when decoding with the various generation strategies. A
coverage score of 1.00 means that the configuration solves all tasks. The best results are highlighted in bold.

per model; Appendix E gives further details. We then evalu-
ate them using all plan generation strategies from Section 5
on three sets of problems: validation (slightly larger than
training and used for checkpoint selection), interpolation
(comparable but distinct sizes), and extrapolation (larger than
validation). For robustness, we use three random seeds per
configuration. For the PlanGPT baseline, we avoid leaking
object names by always randomizing all object names. We
additionally perform ablation studies to analyze the impact
of our contrastive loss (adding it to PlanGPT and removing
it from our models) and to examine the effect of the number
of objects on the contrastive loss; see Appendix E2 and E3,
respectively. Performance is primarily evaluated based on
coverage, i.e., the percentage of problems for which a valid
plan is generated, and plan quality, i.e., the length of the
generated plans compared to best known plan lengths.

Results — Coverage. Coverage is shown in Table 2. PlanGPT
can solve instances similar in size to the training problems (in-
terpolation), but fails entirely on larger instances regardless
of decoding strategy. In contrast, both our architectures solve
larger instances to varying degrees. If regrounding extrapo-
lates well for a domain, applicability-filtered plan generation
tends to perform worse, and vice versa, with regrounding
generally preferable. SymTEP also consistently outperforms
SymTE in coverage. No approach extrapolates in Logistics,
which aligns with known GNN results (Stahlberg, Bonet, and
Geffner 2022a) based on expressiveness limitations. Logis-
tics is also the only domain where PlanGPT outperforms
our models, likely due to its larger number of parameters
allowing better fit to the training data. Even there, however,
our SymTEP model outperforms PlanGPT in both greedy and
regrounding settings.

Results — Plan Quality. Appendix E2 reports plan quality
tables, where we see that the generated plans are often op-
timal or close to optimal. This likely stems from training
exclusively on optimal plans, encouraging the models to re-

produce such policies. Although not our main focus, we also
observe that the SymTEP finds shorter plans in seconds than
the classical planner LAMA (Richter and Westphal 2010)
does in two hours for several problems (we use LAMA to
obtain reference plan lengths), indicating that the learned
policies are practically useful.

Results — Training Stability. Training with the contrastive
objective yields lower validation losses, but the coverage
gains are most pronounced for the heuristic prediction model.
Following Abbe et al. (2024), we hypothesize that this is
because predicting goal distances requires considering all
input tokens, whereas autoregressive next-action prediction
does not. For example, in Gripper predicting the next action
only requires considering a few balls, while the goal distance
depends on all balls.

Across many domains, losses plateau for SymT® models
without the contrastive term, while models with it continue
to improve. We also observed frequent training instabilities
without the contrastive loss for SymT® and SymTEP, leading
to sudden loss divergence; standard stabilization techniques
such as gradient clipping or reduced learning rates did not
help. Across all trained models (including ablations and
hyperparameter tuning), only a single model diverged with
the contrastive loss, compared to 19 without it. We discuss
the link between the contrastive objective and training
stability in Appendix E.

Limitations. While we outperform PlanGPT on extrapola-
tion, our models still have clear limitations. They extrapo-
late to some extent under greedy plan generation, but the
applicability-filtered and regrounding strategies perform bet-
ter, indicating that the learned algorithm is not perfect. In the
hardest domain, Logistics, we cannot extrapolate to larger
instances at all. Extrapolation success likely depends on sev-
eral factors, such as the choice of positional encodings, and
further work is needed to understand their impact on length
generalization. Another limitation is that all transformer mod-



els, including PlanGPT, rely on a fixed-size vocabulary, so
problems with more objects than vocabulary entries cannot
be solved. As we show in Appendix E3, however, our con-
trastive loss allows stable training with much larger vocabu-
laries, making it viable to choose a large vocabulary ahead of
training as we do in our experiments.

7 Related Work

Learning-based approaches for automated planning increas-
ingly complement traditional symbolic methods, aiming to
improve performance, handle more complex domains, and
enable faster planning.

Learning for Planning with Graph Neural Networks.
GNNs (Scarselli et al. 2008) are the predominant deep learn-
ing architecture for learning directly from structured plan-
ning problem representations (Stahlberg, Bonet, and Geffner
2022a,b; Chen and Thiébaux 2024; Stihlberg, Bonet, and
Geffner 2025a; Horcik et al. 2025). Their inductive bias to-
wards processing graph-structured data, where nodes and
edges can represent atoms and their relationships, aligns
well with the relational nature of planning problems. How-
ever, standard GNNSs are theoretically bounded by their ex-
pressive power, aligning with the 1-dimensional Weisfeiler—
Lehman (WL) test (Xu et al. 2018), and may struggle to dis-
tinguish WL-indistinguishable graph structures. Approaches
like higher-order GNNs (Stahlberg, Bonet, and Geffner
2025b) have been explored to lift this expressiveness bar-
rier for planning tasks. Despite their success, GNNs have
not been exploited for generating plans in the context of
next-token generation.

Transformers for Planning and Structured Data. Apply-
ing transformer architectures directly to structured planning
problem inputs is less common than using GNNs. Notable
examples include PlanGPT (Rossetti et al. 2024), which
treats planning as a sequence generation task, and Dual-
former (Su et al. 2024), which trains transformers on search
traces for navigation and puzzle tasks. A key challenge for
these sequence-based models is extrapolation to larger in-
stances. Transformers, particularly those relying on learned
absolute positional encodings, are often limited in their abil-
ity to generalize to sequence lengths significantly different
from those seen during training (Su et al. 2024; Rossetti
et al. 2024). Methods like iterative self-training (Lee et al.
2025) show that transformers can be trained to extrapolate on
some tasks, including graph-encoded mazes, but typically re-
quire complex multi-round training strategies. To the best of
our knowledge, training transformers for out-of-distribution
extrapolation on STRIPS planning problems without such
multi-stage fine-tuning remains an open challenge.

Large Language Models for Planning. Recent research
increasingly leverages pre-trained large language models
(LLMs) for solving planning problems. Some work fine-tunes
LLMs specifically for planning tasks (Pallagani et al. 2022)
or uses them to generate programs that solve planning prob-
lems (Silver et al. 2024; Katz et al. 2024). Other strategies em-
ploy LLMs to generate plans directly from natural language
problem descriptions (Huang et al. 2022), with increasingly
intricate prompting strategies (Yao et al. 2023; Sel et al. 2024;

Gestrin, Kuhlmann, and Seipp 2024; Sel, Jia, and Jin 2025)
and sometimes assisted by external tools (Kambhampati et al.
2024), or to translate natural language into PDDL tasks that
can be solved with off-the-shelf planners (Liu et al. 2023; Os-
wald et al. 2024; Huang, Lipovetzky, and Cohn 2025). These
approaches capitalize on the extensive knowledge embedded
within LLMs and their inherent reasoning capabilities. In
contrast, our work focuses on training models directly on
structured planning data (like PDDL tokens) to obtain robust
and generalizable plan generation models.

Equivariant and Invariant Learning. Training models to
be equivariant or invariant to specific input transformations
is a fundamental theme in deep learning, notably in computer
vision (e.g., CNNs for translation invariance) and GNNs
(permutation-equivariance). For planning problems, sym-
metries such as the arbitrary assignment of object names
introduce complex permutations that ideal learned models
should handle. Some work explores architectural modifi-
cations to achieve equivariance for structured data, e.g.,
Graphormer (Ying et al. 2021). Relevant to object name
symmetries, Renamer (Ankner, Renda, and Carbin 2023)
proposes transformer architectural changes for semantics-
preserving variable renaming. Our work complements such
architectural efforts by exploring training objectives.

Objectives on Intermediate Representations. Standard
training often focuses on the final output loss (e.g., predic-
tion error), but some methods introduce auxiliary losses on
intermediate layer outputs, such as hidden states or atten-
tion weights, to encourage desired properties in the learned
representations. We found no prior work that specifically in-
troduces a contrastive learning objective applied directly to
attention scores or targeted hidden state projections between
symmetrically equivalent inputs with the explicit goal of in-
ducing object name assignment equivariance in a transformer
model. However, there is work that uses losses on attention
for other purposes (Patro et al. 2021).

8 Conclusions and Future Work

By introducing a novel contrastive training objective designed
to encourage object name equivariance in the learned repre-
sentations, combined with architectural choices to address
planning-related symmetries, we showed improved inter- and
extrapolation performance compared to the state-of-the-art
PlanGPT baseline across multiple planning domains. How-
ever, despite significant gains over the baseline, our model
is still unable to consistently generate valid plans for prob-
lems significantly larger than those encountered during train-
ing. This outcome reinforces that achieving robust, out-of-
distribution extrapolation on complex symbolic reasoning
tasks remains a substantial challenge for existing transformer
architectures and training paradigms.

Future work should identify the architectural or representa-
tional bottlenecks that limit generalization. Also, addressing
the practical limitation of a fixed vocabulary size by explor-
ing representation learning techniques independent of token
vocabularies is crucial for tackling very large tasks.
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