Symmetry-Aware Transformer Training
for Automated Planning

Markus Fritzsche Elliot Gestrin Jendrik Seipp
Linkoping University

AAAI 2026, Singapore

WALLENBERG Al
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

LINKOPING
UNIVERSITY

The Task - Classical Planning

Goal State

Initial State

1/12

The Task - Classical Planning

Goal State

Initial State

plan

1/12

The Task - Classical Planning

Goal State
Initial State
plan
on-table(a)
on(b, a) on(b, c)
on-table(c) on(a, b)

clear(b)
clear(c)

1/12

The Task - Classical Planning

Goal State
Initial State
plan

on-table(a)

on(b, a) on(b, c)
on-table(c) on(a, b)

clear(b)

clear(c)

unstack(b, a) — stack(b, c) — pickup(a) — stack(a, b)
1/12

Renamed Task - Object names serve only as identifiers!

Goal State
Initial State
plan
on-table(b) on(k, 03)
on(k, b) on(b, k)
on-table (03)
clear (k)
clear(03)

unstack(k, b) — stack(k, 03) — pickup(b) — stack(b, k) 21

Moivation — Why Learning for Planning?

Classical planning is fully observable, deterministic, and discrete.

However, classical planning is PSPACE-complete (computationally hard).

Traditional planners do not exploit domain knowledge.

Learning-based planners exploit domain structure.

We focus on extrapolation to larger problem sizes.

3/12

PlanGPT: Tokenization

e PlanGPT: Current SoTA Transformer-decoder planner?
e Still lags behind GNN-based methods.

!Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings

of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.
4/12

PlanGPT: Tokenization

e PlanGPT: Current SoTA Transformer-decoder planner?
e Still lags behind GNN-based methods.
e Tokenization:

o Map object names (e.g., blockl) to abstract names o; (random per instance).
o This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
o Tokenize using segmentation (split predicates/atoms into tokens).

!Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

4/12

PlanGPT: Tokenization

e PlanGPT: Current SoTA Transformer-decoder planner?
e Still lags behind GNN-based methods.
e Tokenization:

o Map object names (e.g., blockl) to abstract names o; (random per instance).
o This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
o Tokenize using segmentation (split predicates/atoms into tokens).

Example mapping: a — o1, b — 02, ¢ — 03

Tokenized sequence: <state>, on, ol, 02, clear, ol, on-table, 02, <goal>, on, 02, ol

!Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

4/12

Limitations of PlanGPT

e Combinatorial explosion due to symmetries, and chosen positional encodings are

unsuitable for generalization.

e Four critical limitations:

1.

4. Learned positional encodings. They prevent generalization to unseen positions.

Object Assignment Equivariance. Object names are arbitrary.

With |O| objects and |V| vocabulary names: % equivalent assignments

Information Leakage. Semantic names (e.g., loc-x1-y2) are not randomized,
which allows memorization rather than generalization.

Atom Order Equivariance. |Z|! - |G|! equivalent orderings per assignment.

5/12

Object Assignment Equivariance

Same problem, different assignments

Mapping A Mapping B
a — ol, b — 02, ¢c — 03 a —» 04, b — ol, ¢ — o7
State: on(o1,02), clear(ol), State: on(o4,01), clear(o4d),
on-table (02) on-table(ol)

6/12

Object Assignment Equivariance

Same problem, different assignments

Mapping A Mapping B
a — ol, b — 02, ¢c — 03 a —» 04, b — ol, ¢ — o7
State: on(o1,02), clear(ol), State: on(o4,01), clear(o4d),
on-table (02) on-table(ol)
Combinatorial implication
. . V| . :
With |O| objects and |V| vocabulary names: (V|||(’)|)| equivalent assignments.
For [V| =10 and 0] =3 — % —10x9x8 =720
or =10 an =3 — = = .
(10 — 3)!

6/12

Atom Order Equivariance

States and goals are sets of atoms — order doesn’t matter

Ordering A Ordering B
<state>, on, ol, 02, clear, ol, <state>, clear, ol, on-table, 02,
on-table, 02, <goal>, ... on, ol, 02, <goal>,

7/12

Atom Order Equivariance

States and goals are sets of atoms — order doesn’t matter

Ordering A Ordering B
<state>, on, ol, 02, clear, ol, <state>, clear, ol, on-table, 02,
on-table, 02, <goal>, ... on, ol, 02, <goal>,

Combinatorial implication

With |Z] initial atoms and |G| goal atoms there are |Z|! - |G|! equivalent orderings per
assignment.

Example: |Z] = 3,|G| =1 = 3!- 1! = 9 equivalent orderings.

7/12

Symmetry-Aware Training — Architecture

Overview: We account for language-induced symmetries via architecture and training
objective.

e Atom tokens: one token per atom (e.g., on(o1,02)).

e Goal tokens: dedicated goal predicates (goal-on(...)).

e Drop learned positional encodings (NoPE): This makes atom ordering irrelevant and
allows generalization to longer sequences.

e Contrastive loss: train on paired sequences with different object assignments to align
representations.

8/12

Symmetry-Aware Training — Architecture

Overview: We account for language-induced symmetries via architecture and training
objective.

e Atom tokens: one token per atom (e.g., on(o1,02)).

e Goal tokens: dedicated goal predicates (goal-on(...)).

e Drop learned positional encodings (NoPE): This makes atom ordering irrelevant and
allows generalization to longer sequences.

e Contrastive loss: train on paired sequences with different object assignments to align
representations.

Example:
PlanGPT: <state>, on, ol, 02, ..., <goal>, on, 02, ol
Vs
Ours: on(ol, 02), ..., goal-on(o2, ol)

8/12

Encoder with Contrastive Objective

Transformer Encoder

(| J

)

(.
(g

UL

Input for decoder
(next token prediction)

A (av)

Layer i

<

a5 &)

(@@ @)

-
l

-

-

IE
1 L

B

Readout Module
A\

0
o 80
S
at(ol, 02) . .
free(o3)
S
&0
(;,\ &
at(09, 08) . .
free(ol)

®

T

over token dim

Batch

[seql [at(o1,02) |[free(o3)][goalat(ol, 04) |]

[seq2 [at(09, o8) | [free(ol) || goalat(09, 02) |]

l®

state = {at(bl,roomA), free(left), at-robby(roomA), ...}

goal = {at(b1l,roomB)}

9/12

Symmetry-Aware Training — Architectures

SymTE

Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

To(s) = arg min,e a(s) hg (Tok(succ(s, a), G))

where hy is the trained encoder.

10/12

Symmetry-Aware Training — Architectures

SymTE

Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

To(s) = arg min,e a(s) hg (Tok(succ(s, a), G))
where hy is the trained encoder.
SymTEP
Encoder—Decoder

Autoregressively selects next plan token (greedy).

T = argmaxyey Py (w | m<¢, E5(Tok(s, G)))

with E, the trained encoder and Py, the trained decoder.

10/12

Experiments

PlanGPT - Decoder (baseline)

SymTE (ours)

SymTEP (ours)

greedy applicable regrounding greedy greedy applicable regrounding
1 validation .00+.00 .00+£.00 .00+.00 1.00+.00 1.00+£.00 1.00+.00 .00+£.00
8 interpolation .564.16 .56£.16 .004+.00 1.00+.00 1.00+.00 1.00+.00 1.00+.00
M extrapolation .00+.00 .00+£.00 .00+£.00 .05+.07 .07+£.02 .13+.05 .00+£.00
@ validation .00+.00 .00+£.00 .00+.00 1.00+.00 .17+.24 1.00+£.00 1.00+.00
_& interpolation .00+.00 44416 .004.00 .89+.16 .674+.00 1.00+£.00 1.00+.00
& extrapolation .00+.00 .00£.00 .00+£.00 .02+.03 .00+£.00 .15+.06 .79+.16
= validation .00+.00 14+.12 .004+.00 1.00+.00 .33£.09 .93+.04 .99+.02
2 interpolation .05+.04 .67+.18 A41+.22 1.00+.00 .87+.01 .99+.01 1.00+.00
S extrapolation .00+£.00 .02£.02 .00+£.00 42+.11 .00£.00 .15+.05 .64+.12
8 validation .00+£.00 .08+.12 .00+£.00 .00+.00 .00+£.00 .00+£.00 .00£.00
B interpolation .07+.05 .444.09 .19+.14 .11+.00 .224+.31 .26+.29 .22+.31
ED extrapolation .00+.00 .00+.00 .00+.00 .00+.00 .00+.00 .00+.00 .00+.00

11/12

Summary

Adapting Transformers for symmetries

Architecture-guaranteed partial equivariance
e Loss-encouraged full equivariance

Significant improvements over SoTA

But still lags behind GNNs in terms of
generalization!

Thank you for your attention!

12/12

Appendix — Decoder

{p(03) = 0.1, p(drop) = 0.

A

o1}

‘ MLP

AQ

Transformer Decoder

N T -
| mmm] =mm) ==si

N x Layer i

o/
M A0 o
& &Oé\& o
gos) |8 | Bosy |l
pick pick
ol ol .
) pu—
QS
9 \0 S\
S @Oé\& &
gos) |8 | Bos) |
pick pick
09 09 .

)

1
(seqt (805)) (ot) (o1] |

sea

Encoder output
embeddings

ro

plan = pick(b1, roomA, left), move(roomA, roomB), ...

1/1

	Appendix

