
Symmetry-Aware Transformer Training
for Automated Planning

Markus Fritzsche Elliot Gestrin Jendrik Seipp

Linköping University

AAAI 2026, Singapore

The Task - Classical Planning

Initial State

a

b

c

on-table(a)

on(b, a)

on-table(c)

clear(b)

clear(c)

→
plan

Goal State

c

b

a

on(b, c)

on(a, b)

unstack(b, a) → stack(b, c) → pickup(a) → stack(a, b)

1 / 12

The Task - Classical Planning

Initial State

a

b

c

on-table(a)

on(b, a)

on-table(c)

clear(b)

clear(c)

→
plan

Goal State

c

b

a

on(b, c)

on(a, b)

unstack(b, a) → stack(b, c) → pickup(a) → stack(a, b)

1 / 12

The Task - Classical Planning

Initial State

a

b

c

on-table(a)

on(b, a)

on-table(c)

clear(b)

clear(c)

→
plan

Goal State

c

b

a

on(b, c)

on(a, b)

unstack(b, a) → stack(b, c) → pickup(a) → stack(a, b)

1 / 12

The Task - Classical Planning

Initial State

a

b

c

on-table(a)

on(b, a)

on-table(c)

clear(b)

clear(c)

→
plan

Goal State

c

b

a

on(b, c)

on(a, b)

unstack(b, a) → stack(b, c) → pickup(a) → stack(a, b)

1 / 12

Renamed Task - Object names serve only as identifiers!

Initial State

b

k

o3

on-table(b)

on(k, b)

on-table(o3)

clear(k)

clear(o3)

→
plan

Goal State

o3

k

b

on(k, o3)

on(b, k)

unstack(k, b) → stack(k, o3) → pickup(b) → stack(b, k)
2 / 12

Moivation – Why Learning for Planning?

• Classical planning is fully observable, deterministic, and discrete.

• However, classical planning is PSPACE-complete (computationally hard).

• Traditional planners do not exploit domain knowledge.

• Learning-based planners exploit domain structure.

• We focus on extrapolation to larger problem sizes.

3 / 12

PlanGPT: Tokenization

• PlanGPT: Current SoTA Transformer-decoder planner1

• Still lags behind GNN-based methods.

• Tokenization:

◦ Map object names (e.g., block1) to abstract names oi (random per instance).
◦ This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
◦ Tokenize using segmentation (split predicates/atoms into tokens).

Example mapping: a → o1, b → o2, c → o3

Tokenized sequence: <state>, on, o1, o2, clear, o1, on-table, o2, <goal>, on, o2, o1

1Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

4 / 12

PlanGPT: Tokenization

• PlanGPT: Current SoTA Transformer-decoder planner1

• Still lags behind GNN-based methods.

• Tokenization:

◦ Map object names (e.g., block1) to abstract names oi (random per instance).
◦ This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
◦ Tokenize using segmentation (split predicates/atoms into tokens).

Example mapping: a → o1, b → o2, c → o3

Tokenized sequence: <state>, on, o1, o2, clear, o1, on-table, o2, <goal>, on, o2, o1

1Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

4 / 12

PlanGPT: Tokenization

• PlanGPT: Current SoTA Transformer-decoder planner1

• Still lags behind GNN-based methods.

• Tokenization:

◦ Map object names (e.g., block1) to abstract names oi (random per instance).
◦ This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
◦ Tokenize using segmentation (split predicates/atoms into tokens).

Example mapping: a → o1, b → o2, c → o3

Tokenized sequence: <state>, on, o1, o2, clear, o1, on-table, o2, <goal>, on, o2, o1

1Rossetti, Nicholas, et al. “Learning general policies for planning through GPT models.” Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

4 / 12

Limitations of PlanGPT

• Combinatorial explosion due to symmetries, and chosen positional encodings are
unsuitable for generalization.

• Four critical limitations:

1. Object Assignment Equivariance. Object names are arbitrary.

With |O| objects and |V| vocabulary names: |V|!
(|V|−|O|)! equivalent assignments

2. Information Leakage. Semantic names (e.g., loc-x1-y2) are not randomized,
which allows memorization rather than generalization.

3. Atom Order Equivariance. |I|! · |G|! equivalent orderings per assignment.

4. Learned positional encodings. They prevent generalization to unseen positions.

5 / 12

Object Assignment Equivariance

Same problem, different assignments

Mapping A
a → o1, b → o2, c → o3

State: on(o1,o2), clear(o1),

on-table(o2)

Mapping B
a → o4, b → o1, c → o7

State: on(o4,o1), clear(o4),

on-table(o1)

Combinatorial implication

With |O| objects and |V| vocabulary names:
|V|!

(|V| − |O|)!
equivalent assignments.

For |V| = 10 and |O| = 3:
10!

(10− 3)!
= 10× 9× 8 = 720.

6 / 12

Object Assignment Equivariance

Same problem, different assignments

Mapping A
a → o1, b → o2, c → o3

State: on(o1,o2), clear(o1),

on-table(o2)

Mapping B
a → o4, b → o1, c → o7

State: on(o4,o1), clear(o4),

on-table(o1)

Combinatorial implication

With |O| objects and |V| vocabulary names:
|V|!

(|V| − |O|)!
equivalent assignments.

For |V| = 10 and |O| = 3:
10!

(10− 3)!
= 10× 9× 8 = 720.

6 / 12

Atom Order Equivariance

States and goals are sets of atoms — order doesn’t matter

Ordering A
<state>, on, o1, o2, clear, o1,

on-table, o2, <goal>, ...

Ordering B
<state>, clear, o1, on-table, o2,

on, o1, o2, <goal>, ...

Combinatorial implication

With |I| initial atoms and |G| goal atoms there are |I|! · |G|! equivalent orderings per
assignment.

Example: |I| = 3, |G| = 1 ⇒ 3! · 1! = 9 equivalent orderings.

7 / 12

Atom Order Equivariance

States and goals are sets of atoms — order doesn’t matter

Ordering A
<state>, on, o1, o2, clear, o1,

on-table, o2, <goal>, ...

Ordering B
<state>, clear, o1, on-table, o2,

on, o1, o2, <goal>, ...

Combinatorial implication

With |I| initial atoms and |G| goal atoms there are |I|! · |G|! equivalent orderings per
assignment.

Example: |I| = 3, |G| = 1 ⇒ 3! · 1! = 9 equivalent orderings.

7 / 12

Symmetry-Aware Training — Architecture

Overview: We account for language-induced symmetries via architecture and training
objective.

• Atom tokens: one token per atom (e.g., on(o1,o2)).
• Goal tokens: dedicated goal predicates (goal-on(...)).
• Drop learned positional encodings (NoPE): This makes atom ordering irrelevant and

allows generalization to longer sequences.
• Contrastive loss: train on paired sequences with different object assignments to align

representations.

Example:
PlanGPT: <state>, on, o1, o2, ..., <goal>, on, o2, o1

vs
Ours: on(o1, o2), ..., goal-on(o2, o1)

8 / 12

Symmetry-Aware Training — Architecture

Overview: We account for language-induced symmetries via architecture and training
objective.

• Atom tokens: one token per atom (e.g., on(o1,o2)).
• Goal tokens: dedicated goal predicates (goal-on(...)).
• Drop learned positional encodings (NoPE): This makes atom ordering irrelevant and

allows generalization to longer sequences.
• Contrastive loss: train on paired sequences with different object assignments to align

representations.

Example:
PlanGPT: <state>, on, o1, o2, ..., <goal>, on, o2, o1

vs
Ours: on(o1, o2), ..., goal-on(o2, o1)

8 / 12

Encoder with Contrastive Objective

N×

at(o1, o2)

free(o3)

. . .

at
(o
1,
o2
)

fre
e(
o3
)

. .
.

Layer iLayer iN×

=

at(o9, o8)

free(o1)

. . .

at
(o
9,
o8
)

fre
e(
o1
)

. .
.

Layer iN×

Transformer Encoder

seq1 at(o1, o2) free(o3) goal at(o1, o4) . . .

seq2 at(o9, o8) free(o1) goal at(o9, o2) . . .
Batch

. . .

. . .

. . .

. . .

. . .

. . .

Input for decoder
(next token prediction)

4b

3

4a

Readout Module∑
over token dim

MLP

h

state = {at(b1,roomA), free(left), at-robby(roomA), . . . }
goal = {at(b1,roomB)}

1

2

9 / 12

Symmetry-Aware Training — Architectures

SymTE

Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

πθ(s) = argmina∈A(s) hθ
(
Tok

(
succ(s, a),G

))
where hθ is the trained encoder.

SymTED

Encoder–Decoder

Autoregressively selects next plan token (greedy).

πt = argmaxw∈V Pψ
(
w | π<t ,Eϕ(Tok(s,G))

)
with Eϕ the trained encoder and Pψ the trained decoder.

10 / 12

Symmetry-Aware Training — Architectures

SymTE

Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

πθ(s) = argmina∈A(s) hθ
(
Tok

(
succ(s, a),G

))
where hθ is the trained encoder.

SymTED

Encoder–Decoder

Autoregressively selects next plan token (greedy).

πt = argmaxw∈V Pψ
(
w | π<t ,Eϕ(Tok(s,G))

)
with Eϕ the trained encoder and Pψ the trained decoder.

10 / 12

Experiments

PlanGPT - Decoder (baseline) SymTE (ours) SymTED (ours)

greedy applicable regrounding greedy greedy applicable regrounding

B
lo
ck
s validation .00±.00 .00±.00 .00±.00 1.00±.00 1.00±.00 1.00±.00 .00±.00

interpolation .56±.16 .56±.16 .00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00
extrapolation .00±.00 .00±.00 .00±.00 .05±.07 .07±.02 .13±.05 .00±.00

G
ri
p
p
er validation .00±.00 .00±.00 .00±.00 1.00±.00 .17±.24 1.00±.00 1.00±.00

interpolation .00±.00 .44±.16 .00±.00 .89±.16 .67±.00 1.00±.00 1.00±.00
extrapolation .00±.00 .00±.00 .00±.00 .02±.03 .00±.00 .15±.06 .79±.16

V
is
it
a
ll validation .00±.00 .14±.12 .00±.00 1.00±.00 .33±.09 .93±.04 .99±.02

interpolation .05±.04 .67±.18 .41±.22 1.00±.00 .87±.01 .99±.01 1.00±.00
extrapolation .00±.00 .02±.02 .00±.00 .42±.11 .00±.00 .15±.05 .64±.12

L
o
g
is
ti
cs validation .00±.00 .08±.12 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00

interpolation .07±.05 .44±.09 .19±.14 .11±.00 .22±.31 .26±.29 .22±.31
extrapolation .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00 .00±.00

11 / 12

Summary

• Adapting Transformers for symmetries

• Architecture-guaranteed partial equivariance

• Loss-encouraged full equivariance

• Significant improvements over SoTA

• But still lags behind GNNs in terms of
generalization!

Thank you for your attention!

12 / 12

Appendix — Decoder

N×

⟨BOS⟩

pick

o1

. . .

at
(o
1,
o2
)

fre
e(
o3
)

. .
.

⟨BOS⟩

pick

o1

. . .

⟨B
O
S⟩

pi
ck

o1 . .
.

Layer iLayer iN×

==

⟨BOS⟩

pick

o9

. . .

at
(o
9,
o8
)

fre
e(
o1
)

. .
.

⟨BOS⟩

pick

o9

. . .

⟨B
O
S⟩

pi
ck

o9 . .
.

Layer iN×

Transformer Decoder

. . .

. . .

Encoder output
embeddings

seq1 ⟨BOS⟩ pick o1 . . .

seq2 ⟨BOS⟩ pick o9 . . .
Batch

. . .

. . .

. . .

. . .

. . .

. . .

plan = pick(b1, roomA, left), move(roomA, roomB), . . .

5

6

MLP

7

{p(03) = 0.1, p(drop) = 0.01}

1 / 1

	Appendix

