

# Symmetry-Aware Transformer Training for Automated Planning

---

Markus Fritzsche   Elliot Gestrin   Jendrik Seipp

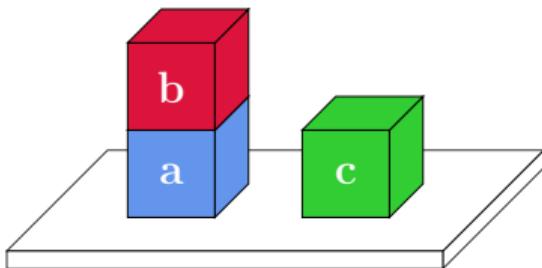
Linköping University

AAAI 2026, Singapore

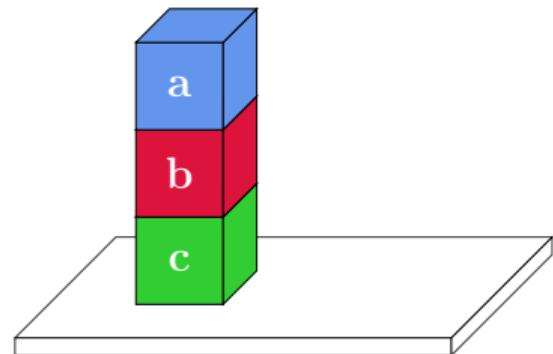


# The Task - Classical Planning

Initial State

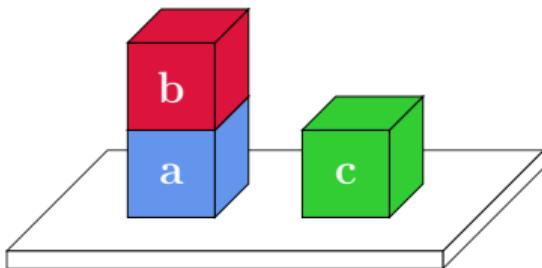


Goal State



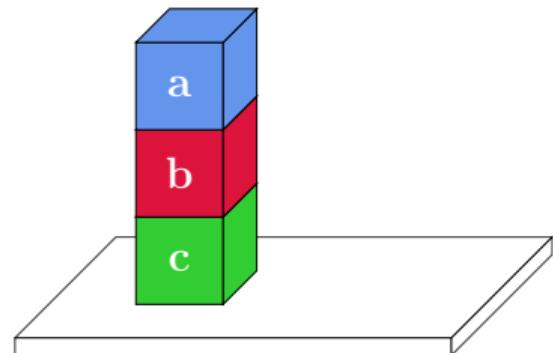
# The Task - Classical Planning

Initial State



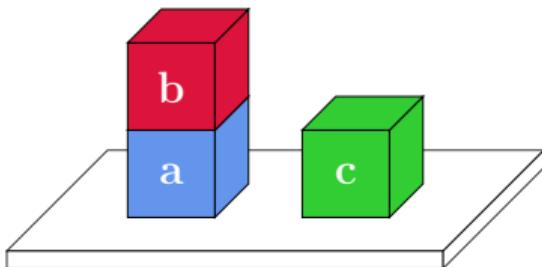
→  
plan

Goal State



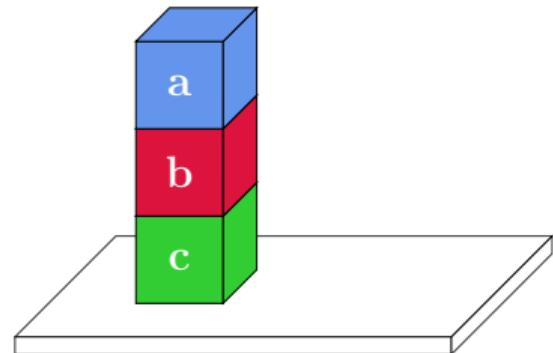
# The Task - Classical Planning

Initial State



→  
plan

Goal State

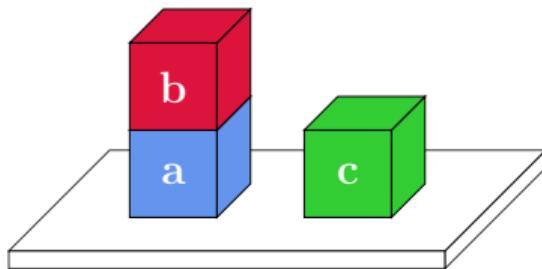


```
on-table(a)
  on(b, a)
on-table(c)
  clear(b)
  clear(c)
```

```
on(b, c)
on(a, b)
```

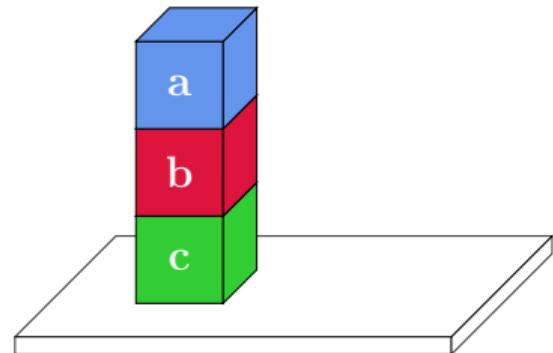
# The Task - Classical Planning

Initial State



→  
plan

Goal State



on-table(a)  
on(b, a)  
on-table(c)  
clear(b)  
clear(c)

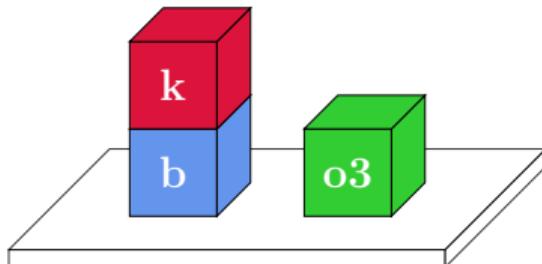
on(b, c)  
on(a, b)

---

unstack(b, a) → stack(b, c) → pickup(a) → stack(a, b)

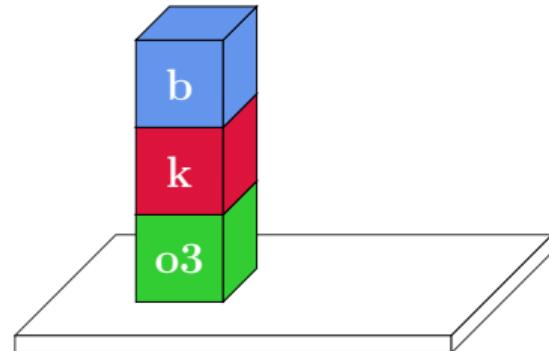
## Renamed Task - Object names serve only as identifiers!

Initial State



→  
plan

Goal State



on-table(**b**)

on(**k**, **b**)

on-table(**o3**)

clear(**k**)

clear(**o3**)

on(**k**, **o3**)

on(**b**, **k**)

---

unstack(**k**, **b**) → stack(**k**, **o3**) → pickup(**b**) → stack(**b**, **k**)

## Moivation – Why Learning for Planning?

- Classical planning is fully observable, deterministic, and discrete.
- However, classical planning is **PSPACE-complete** (computationally hard).
- Traditional planners do not exploit domain knowledge.
- **Learning-based planners** exploit domain structure.
- We focus on extrapolation to larger problem sizes.

## PlanGPT: Tokenization

- PlanGPT: Current SoTA Transformer-decoder planner<sup>1</sup>
- Still lags behind GNN-based methods.

---

<sup>1</sup>Rossetti, Nicholas, et al. "Learning general policies for planning through GPT models." Proceedings of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

## PlanGPT: Tokenization

- PlanGPT: Current SoTA Transformer-decoder planner<sup>1</sup>
- Still lags behind GNN-based methods.
- Tokenization:
  - Map object names (e.g., block1) to abstract names  $o_i$  (random per instance).
  - This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
  - Tokenize using segmentation (split predicates/atoms into tokens).

---

<sup>1</sup>Rossetti, Nicholas, et al. "Learning general policies for planning through GPT models." Proceedings of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

## PlanGPT: Tokenization

- PlanGPT: Current SoTA Transformer-decoder planner<sup>1</sup>
- Still lags behind GNN-based methods.
- Tokenization:
  - Map object names (e.g., block1) to abstract names  $o_i$  (random per instance).
  - This implies an upper limit of objects (e.g., 10) due to fixed vocabulary.
  - Tokenize using segmentation (split predicates/atoms into tokens).

**Example mapping:** a → o1, b → o2, c → o3

**Tokenized sequence:** <state>, on, o1, o2, clear, o1, on-table, o2, <goal>, on, o2, o1

---

<sup>1</sup>Rossetti, Nicholas, et al. "Learning general policies for planning through GPT models." Proceedings of the International Conference on Automated Planning and Scheduling, Vol. 34, 2024.

## Limitations of PlanGPT

- Combinatorial explosion due to symmetries, and chosen positional encodings are unsuitable for generalization.
- Four critical limitations:
  1. **Object Assignment Equivariance.** Object names are arbitrary.  
With  $|\mathcal{O}|$  objects and  $|\mathcal{V}|$  vocabulary names:  $\frac{|\mathcal{V}|!}{(|\mathcal{V}|-|\mathcal{O}|)!}$  equivalent assignments
  2. **Information Leakage.** Semantic names (e.g., loc-x1-y2) are not randomized, which allows memorization rather than generalization.
  3. **Atom Order Equivariance.**  $|\mathcal{I}|! \cdot |\mathcal{G}|!$  equivalent orderings per assignment.
  4. **Learned positional encodings.** They prevent generalization to unseen positions.

# Object Assignment Equivariance

Same problem, different assignments

## Mapping A

$a \rightarrow o1, b \rightarrow o2, c \rightarrow o3$

**State:**  $on(o1, o2)$ ,  $clear(o1)$ ,  
 $on-table(o2)$

## Mapping B

$a \rightarrow o4, b \rightarrow o1, c \rightarrow o7$

**State:**  $on(o4, o1)$ ,  $clear(o4)$ ,  
 $on-table(o1)$

# Object Assignment Equivariance

Same problem, different assignments

## Mapping A

$a \rightarrow o_1, b \rightarrow o_2, c \rightarrow o_3$

**State:**  $on(o_1, o_2)$ ,  $clear(o_1)$ ,  
 $on-table(o_2)$

## Mapping B

$a \rightarrow o_4, b \rightarrow o_1, c \rightarrow o_7$

**State:**  $on(o_4, o_1)$ ,  $clear(o_4)$ ,  
 $on-table(o_1)$

## Combinatorial implication

With  $|\mathcal{O}|$  objects and  $|\mathcal{V}|$  vocabulary names:  $\frac{|\mathcal{V}|!}{(|\mathcal{V}| - |\mathcal{O}|)!}$  equivalent assignments.

For  $|\mathcal{V}| = 10$  and  $|\mathcal{O}| = 3$ :  $\frac{10!}{(10 - 3)!} = 10 \times 9 \times 8 = 720$ .

# Atom Order Equivariance

**States and goals are sets of atoms — order doesn't matter**

## Ordering A

```
<state>, on, o1, o2, clear, o1,  
on-table, o2, <goal>, ...
```

## Ordering B

```
<state>, clear, o1, on-table, o2,  
on, o1, o2, <goal>, ...
```

# Atom Order Equivariance

**States and goals are sets of atoms — order doesn't matter**

## Ordering A

`<state>, on, o1, o2, clear, o1,  
on-table, o2, <goal>, ...`

## Ordering B

`<state>, clear, o1, on-table, o2,  
on, o1, o2, <goal>, ...`

## Combinatorial implication

With  $|\mathcal{I}|$  initial atoms and  $|\mathcal{G}|$  goal atoms there are  $|\mathcal{I}|! \cdot |\mathcal{G}|!$  equivalent orderings per assignment.

Example:  $|\mathcal{I}| = 3, |\mathcal{G}| = 1 \Rightarrow 3! \cdot 1! = 9$  equivalent orderings.

## Symmetry-Aware Training — Architecture

**Overview:** We account for language-induced symmetries via architecture and training objective.

- **Atom tokens:** one token per atom (e.g.,  $\text{on}(o1, o2)$ ).
- **Goal tokens:** dedicated goal predicates ( $\text{goal-on}(\dots)$ ).
- **Drop learned positional encodings (NoPE):** This makes atom ordering irrelevant and allows generalization to longer sequences.
- **Contrastive loss:** train on paired sequences with different object assignments to align representations.

## Symmetry-Aware Training — Architecture

**Overview:** We account for language-induced symmetries via architecture and training objective.

- **Atom tokens:** one token per atom (e.g.,  $\text{on}(o1, o2)$ ).
- **Goal tokens:** dedicated goal predicates ( $\text{goal-on}(\dots)$ ).
- **Drop learned positional encodings (NoPE):** This makes atom ordering irrelevant and allows generalization to longer sequences.
- **Contrastive loss:** train on paired sequences with different object assignments to align representations.

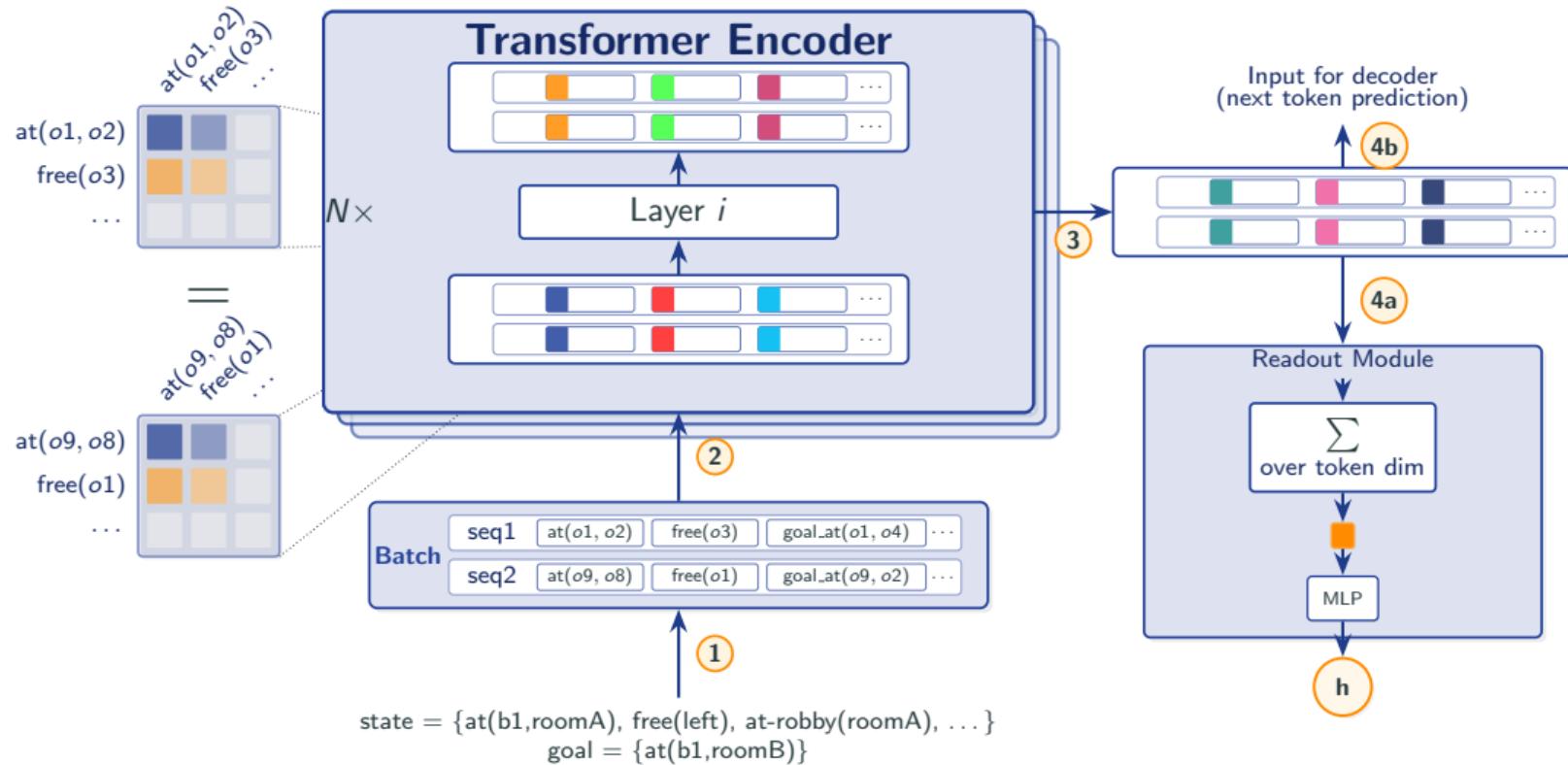
### Example:

PlanGPT:  $\langle \text{state} \rangle, \text{on}, o1, o2, \dots, \langle \text{goal} \rangle, \text{on}, o2, o1$

vs

Ours:  $\text{on}(o1, o2), \dots, \text{goal-on}(o2, o1)$

# Encoder with Contrastive Objective



### SymT<sup>E</sup> Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

$$\pi_\theta(s) = \arg \min_{a \in \mathcal{A}(s)} h_\theta(\text{Tok}(\text{succ}(s, a), G))$$

where  $h_\theta$  is the trained encoder.

## SymT<sup>E</sup> Encoder-only

Estimates goal distance; used as a greedy heuristic policy.

$$\pi_\theta(s) = \arg \min_{a \in \mathcal{A}(s)} h_\theta(\text{Tok}(\text{succ}(s, a), G))$$

where  $h_\theta$  is the trained encoder.

## SymT<sup>ED</sup> Encoder–Decoder

Autoregressively selects next plan token (greedy).

$$\pi_t = \arg \max_{w \in \mathcal{V}} P_\psi(w \mid \pi_{<t}, E_\phi(\text{Tok}(s, G)))$$

with  $E_\phi$  the trained encoder and  $P_\psi$  the trained decoder.

# Experiments

|           |               | PlanGPT - Decoder (baseline) |                |                | SymT <sup>E</sup> (ours) | SymT <sup>ED</sup> (ours) |                 |                 |
|-----------|---------------|------------------------------|----------------|----------------|--------------------------|---------------------------|-----------------|-----------------|
|           |               | greedy                       | applicable     | regrounding    | greedy                   | greedy                    | applicable      | regrounding     |
| Blocks    | validation    | .00±.00                      | .00±.00        | .00±.00        | <b>1.00±.00</b>          | <b>1.00±.00</b>           | <b>1.00±.00</b> | .00±.00         |
|           | interpolation | .56±.16                      | .56±.16        | .00±.00        | <b>1.00±.00</b>          | <b>1.00±.00</b>           | <b>1.00±.00</b> | <b>1.00±.00</b> |
|           | extrapolation | .00±.00                      | .00±.00        | .00±.00        | .05±.07                  | .07±.02                   | <b>.13±.05</b>  | .00±.00         |
| Gripper   | validation    | .00±.00                      | .00±.00        | .00±.00        | <b>1.00±.00</b>          | .17±.24                   | <b>1.00±.00</b> | <b>1.00±.00</b> |
|           | interpolation | .00±.00                      | .44±.16        | .00±.00        | .89±.16                  | .67±.00                   | <b>1.00±.00</b> | <b>1.00±.00</b> |
|           | extrapolation | .00±.00                      | .00±.00        | .00±.00        | .02±.03                  | .00±.00                   | .15±.06         | <b>.79±.16</b>  |
| Visit-all | validation    | .00±.00                      | .14±.12        | .00±.00        | <b>1.00±.00</b>          | .33±.09                   | .93±.04         | .99±.02         |
|           | interpolation | .05±.04                      | .67±.18        | .41±.22        | <b>1.00±.00</b>          | .87±.01                   | .99±.01         | <b>1.00±.00</b> |
|           | extrapolation | .00±.00                      | .02±.02        | .00±.00        | .42±.11                  | .00±.00                   | .15±.05         | <b>.64±.12</b>  |
| Logistics | validation    | .00±.00                      | <b>.08±.12</b> | .00±.00        | .00±.00                  | .00±.00                   | .00±.00         | .00±.00         |
|           | interpolation | .07±.05                      | <b>.44±.09</b> | .19±.14        | .11±.00                  | .22±.31                   | .26±.29         | .22±.31         |
|           | extrapolation | <b>.00±.00</b>               | <b>.00±.00</b> | <b>.00±.00</b> | <b>.00±.00</b>           | <b>.00±.00</b>            | <b>.00±.00</b>  | <b>.00±.00</b>  |

## Summary

- Adapting Transformers for symmetries
- Architecture-guaranteed partial equivariance
- Loss-encouraged full equivariance
- Significant improvements over SoTA
- **But still lags behind GNNs in terms of generalization!**



Thank you for your attention!

## Appendix — Decoder

