
Learning and Exploiting
Subgoal Structures
in Classical Planning
Towards Reliable and Transparent Intelligent Agents
that Learn to Plan on Multiple Levels

Linköping Studies in Science and Technology
Dissertation No. 2439

Dominik Drexler

Dom
inik Drexler 	

 Learning and Exploiting Subgoal Structures in Classical Planning 2025

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2439, 2025
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Linköping Studies in Science and Technology
Dissertations, No. 2439

Learning and Exploiting Subgoal Structures
in Classical Planning

Towards Reliable and Transparent Intelligent Agents
that Learn to Plan on Multiple Levels

Dominik Drexler

Linköping University
Department of Computer and Information Science

Division of Artificial Intelligence and Integrated Computer Systems
SE-581 83 Linköping, Sweden

Linköping 2025

Typeset using LATEX

Printed by LiU-Tryck, Linköping 2025

Edition 1:1

© Dominik Drexler, 2025
ISBN 978–91–8118–019–0 (print)
ISBN 978–91–8118–020–6 (PDF)
https://doi.org/10.3384/9789181180206
ISSN 0345-7524
Published articles have been reprinted with permission from the
respective copyright holder.

ii

POPULÄRVETENSKAPLIG SAMMANFATTNING

Tänk tillbaka till första gången du satte dig bakom ratten på en bil. Dina
händer greppade ratten, dina tankar rusade för att minnas varje trafikregel,
och varje beslut kändes som en ödesdiger uppgift. Med tiden blev körningen
en vana, enkel och intuitiv, även i hektisk trafik. Men när du ställs inför en
oväntad omväg en komplicerad manöver måste du stanna upp och tänka efter,
använda medvetet tänkande, för att navigera situationen. Denna skillnad
mellan intuitivt och medvetet tänkande speglar två typer av intelligens som
forskare försöker återskapa i artificiella system: system 1 och system 2.

Under det senaste decenniet har system 1-metoder gjort imponerande fram-
steg. Dessa system har slagit mänskliga mästare i spel som schack och Go
– aktiviteter som kräver strategiskt tänkande och planering – och visat stor
skicklighet i kooperativa flerspelarspel. System 1 bygger på erfarenhetsbaserat
lärande, vilket gör det snabbt och intuitivt. Dock är beslutsprocessen inte
transparent, vilket betyder att det är svårt att förstå eller förklara besluten.
System 2, å andra sidan, resonerar steg för steg och analyserar varje möjlig
handling för att uppnå ett mål. Detta gör beslutsprocessen transparent och
tillförlitligt, men ofta för långsamt för realtidstillämpningar. Även om båda
systemen är kraftfulla inom sina respektive områden, begränsar deras indiv-
duella svagheter att de används för mer komplexa, verkliga problem. Detta
väcker en avgörande fråga inom artificiell intelligens: Hur kan vi kombinera
system 1:s snabbhet och intuition med system 2:s pålitlighet och transparens
för att skapa bättre och mer effektiva system?

Denna avhandling utforskar hur dessa två typer av intelligens kan integreras
genom användning av fördefinierade målspråk. Till skillnad från många system
1-metoder, som hittar på vaga representationsspråk under inlärningen, har
fördefinierade målspråk tydligt specificerad syntax och semantik. Syntaxen
styr hur meningar byggs upp, medan semantiken bestämmer deras innebörd.
Våra meningar beskriver delmål på högre nivå, vilket är avgörande för att
lösa problem på ett effektivt, pålitligt och transparent sätt – en metod som
även människor och många djur tillämpar. Vi planerar på en hög nivå först
och löser detaljerna därefter. Forskare har föreslagit flera olika målspråk och
jämfört deras uttryckskraft, det vill säga deras förmåga att beskriva objekten
och deras relationer inom ett problem. I avhandlingen analyseras kraven för
uttryckskraft hos olika målspråk, och resultaten visar att även enkla målspråk
är tillräckliga för att möjliggöra en effektiv integration av system 1 och system
2. Detta demonstrerar att det är fullt genomförbart att kombinera snabbhet
och intuition med transparens och pålitlighet genom målspråk.

iii

ABSTRACT

Classical planning aims to find a plan that is a sequence of actions allowing
an intelligent agent to move from its current situation to one that satisfies
the goal. Finding a plan is computationally challenging. Agents in the real
world often encounter structurally similar problems with varying objects but
the same predicates, actions, and related goals. Generalized planning aims
to find a general plan that compactly encodes efficiently obtainable plans for
each problem in an infinitely large class of structurally similar problems. Thus,
we can query a general plan to efficiently obtain a plan for any problem in the
class. A general plan may encode behavior on different levels of abstraction.
High-level abstractions include subgoal structures that encode stepping stones
towards the goal. Subgoal structures play a central role in human problem-
solving, enabling reasoning at a higher level before working out the details of
a plan. Learning simple, compact, meaningful, and efficient subgoal structures
and their hierarchies without human intervention is an open challenge.

This thesis introduces a method for learning subgoal structures with a crisp
characterization; they decompose problems into subproblems of controllable
polynomial complexity. We represent subgoal structures using the recently
introduced policy sketches language, whose simple syntax and semantics build
the theoretical foundation of our work. We extend our method to address
the long-standing problem of learning hierarchical policies. Our extended
method iteratively decomposes classes of problems into classes of subproblems
with strictly smaller polynomial complexity, resulting in effective hierarchi-
cal decompositions. Our methods learn from small example problems using
combinatorial optimization. They seek the syntactically simplest solution,
enabling interpretability and allowing us often to establish their correctness
for an entire problem class. When learning methods fail, it often results from
limited scalability or a lack of language expressivity. We develop two methods
to address these limitations. First, we develop symmetry-based abstractions to
reduce redundancy in training data and improve learning efficiency. Second,
we develop a method for testing the language expressivity requirement of
benchmark sets using first-order logic. Moreover, we take steps toward devel-
oping a scalable planning framework that avoids an exponential preprocessing
step known as grounding, which is often unnecessary in generalized planning.
Our framework supports expressive language features such as conditional ef-
fects and derived predicates that cannot concisely be compiled away, enabling
researchers to model and address more complex planning problems.

iv

Acknowledgments

Writing my thesis and the time spent during my doctoral studies have been
an incredible journey. It gave me the chance to further explore my deepest
passions and the opportunity of meeting amazing people worldwide. I want to
use this space to express my gratitude to those who have contributed to this
journey in one way or another.

First and foremost, I want to thank my advisor, Hector Geffner, for giving me
the opportunity to pursue this path, making it possible to travel to international
conferences, inviting me as a guest researcher to his group at RWTH Aachen
University in Germany, giving me a lot of freedom in my work, providing
many ideas, and working in close collaboration. Hector’s vision of artificial
intelligence and strict requirement for deep understanding and crisp solutions
have truly inspired my research.

More often than not, a doctoral dissertation results from close collaboration
with researchers worldwide. The success of this thesis and other publications
has been made possible through the contributions of several co-authors: Blai
Bonet, Hector Geffner, Daniel Gnad, Paul Höft, Jendrik Seipp, Javier Segovia-
Aguas, David Speck, and Simon Ståhlberg. I am deeply grateful to all of you
for your collaboration and insights.

Working in the Machine Reasoning Lab has been an incredible experience,
surrounded by many wonderful people, including Karin Baardsen, Markus
Fritzsche, Martin Funkquist, Hector Geffner, Elliot Gestrin, Daniel Gnad, Arash
Haratian, Paul Höft, Oliver Joergensen, Kristina Levina, Farid Musayev, Ulf
Nilsson, Mauricio Salerno, Jendrik Seipp, Mika Skjelnes, David Speck, Simon
Ståhlberg, and Damien Van Meerbeeck. I would like to thank Jendrik Seipp,
my co-advisor, for introducing me to this fantastic opportunity and providing
invaluable guidance. Since the Machine Reasoning Lab was founded rela-
tively recently, I had the unique experience of being its first and only student.
Thankfully, the wonderful people from the Natural Language Processing Lab
welcomed me for Fika and have continued to do so ever since. Thank you for
being so inviting: Marcel Bollmann, Ehsan Doostmohammadi, Kevin Glocker,

v

Oskar Holmström, Jenny Kunz, Marco Kuhlmann, Kätriin Kukk, Noah-Manuel
Michael, Romina Oji, and Olle Torstensson.

During my Bachelor’s and Master’s studies at the University of Freiburg, I
met two amazing people whose passion first sparked my interest in artificial
intelligence. First, Robert Mattmüller, an exceptional teacher who supervised
several of my projects during my Bachelor’s and Master’s studies, including
my theses. His guidance played a crucial role in shaping my academic journey.
Second, David Speck, my co-advisor during my Masters, generously shared his
office with me during that time. Ever since then, David has provided invaluable
advice, both professionally and personally, and has become a truly great friend.
I would also like to express my special thanks to Simon Ståhlberg, whom I first
met at Linköping University. Together, we had countless fruitful discussions
that led to impactful work, new ideas, and a shared passion for software
development. Our conference visits were always paired with incredible travels,
from a relaxed barbecue at a villa in Rhodes, Greece, to cruise shipping through
Lan Ha Bay, Vietnam. Through all these experiences, Simon has become a true
friend.

One of the reasons it felt easy to move such a long distance from Southern
Germany to Sweden was my interest in powerlifting. In this regard, I would
like to thank everyone at Linköpings Atletklubb for introducing me to the sport
and creating such a great atmosphere in the gym. I am also grateful to the
people at Kraftsport Aachen e.V., who welcomed me as a member during my
research visit to Aachen. Your dedication has been truly inspiring, and the
sport has played a significant role in my doctoral studies by keeping me healthy
and balanced. Speaking about moving to Sweden, I would also like to thank
my wonderful landlords Kristina and Bo Lennhammar for their support.

Doctoral studies can be intense and demanding, but they have also been an
incredibly rewarding experience, thanks in no small part to the support of
great friends. I would like to thank Oliver Blessing, Konstantin Jordan, Fabian
Recktenwald, Natthakorn Saensaeng, and An Tran, who have been by my side
for quite some time. They always had my back and provided a much-needed
dose of distraction when I needed it most.

Last but not least, I would like to thank my family, my parents, Manfred and
Monika Drexler, my sister Natalie Kotz and her husband, Daniel Kotz, my aunts
Cornelia Faber, Eva Gach, Martina Stelter, my uncles Remko Faber, Robert Gach,
Eberhard Roth, and Uwe Stelter, as well as my cousins Katharina Faber, Robert
Faber, Elli Gach, and Lotta Gach. Your unwavering support, encouragement,
and belief in me have been the foundation that made this journey possible. I
am forever grateful to have such a wonderful family by my side.

vi

Contents

Abstract iii

Acknowledgments vi

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Outline . 4
1.2 Published Works . 5

2 Preliminaries 7
2.1 Classical Planning . 7
2.2 Generalized Planning . 9
2.3 Planning Width . 10
2.4 Policy Sketches . 11
2.5 Description Logics . 13
2.6 Relational Structures and Graphs 14

3 Expressing the Subgoal Structure 15
3.1 Example Policy Sketch . 17
3.2 Experiments . 20
3.3 Discussion . 20

4 Learning Policy Sketches 23
4.1 Method . 24
4.2 Experiments . 26
4.3 Analysis . 27
4.4 Discussion . 28

vii

5 Learning Hierarchical Policies 31
5.1 Characterization . 33
5.2 Method . 36
5.3 Experiments . 36
5.4 Discussion . 37

6 Abstractions 39
6.1 Theoretical Framework . 42
6.2 Experiments . 45
6.3 Discussion . 46

7 Expressive Learning Requirements 49
7.1 Method . 50
7.2 Experiments . 51
7.3 Discussion . 53

8 Lifted Planning With Expressive Extensions 55
8.1 Expressive Language Extensions 57
8.2 Experiments . 58
8.3 Discussion . 63

9 Conclusions 65

Bibliography 67

Paper I 81

Paper II 121

Paper III 133

Paper IV 147

viii

List of Figures

1.1 The illustration shows two discretized problems from the class
of problems for doing the laundry. Each problem has a robot, a
washing machine, a varying-sized grid, and various laundry pieces. 2

2.1 The illustration shows a problem over the laundry domain. A
robot, a laundry piece, and a washing machine are in a grid with
three locations. 9

5.1 The illustration shows a multi-level plan for doing the laundry.
The circle nodes represent states, and the double-circled node
represents a goal state. The highest-level plan is at the top. The
dotted lines indicate the respective decompositions into lower-level
plans. 32

5.2 The illustration shows a valid hierarchical policy ΠL
2 for class 𝒬L. . 34

6.1 The illustration shows the fully expanded initial state 𝑠0 of a
laundry problem that contains a robot 𝑎, two laundry pieces 𝑝1
and 𝑝2, and two locations 𝑙 and 𝑟. In 𝑠0, both laundry pieces are
at location 𝑙 with goal location 𝑟, and the robot 𝑎 is at location 𝑙.
The laundry pieces are symmetric; hence, the states 𝑠2 and 𝑠3 are
symmetric, denoted by a dotted rectangle. 41

6.2 The illustration shows the graph of the state 𝑠2 or 𝑠3 from Fig-
ure 6.1. The object vertices are uncolored. The positional argu-
ment vertices are colored depending on their position and predi-
cate. The static goal predicate atg represents the goal location of
the pieces, e.g., atg(𝑝1, 𝑟). 43

6.3 The illustration shows a fragment of the abstraction for a problem
from 𝒬L with 𝑛 laundry pieces and two locations 𝑙 and 𝑟. The
number of pieces at 𝑙 (#L), whether one is held (H), and the robot’s
location (C) identifies each equivalence class. The abstraction
contains 4𝑛 + 2 states (see text). 44

ix

8.1 A pairwise comparison between Mimir-grounded and Fast Down-
ward on the STRIPS benchmark, comparing the total time in
milliseconds required to find a plan. We label a problem “easy”
if both configurations require less than 10000 milliseconds, and
otherwise, we label it “hard”. 61

8.2 A pairwise comparison between Mimir-lifted and Powerlifted con-
figurations on the HTG benchmark set, comparing the total time
in milliseconds required to find a plan. We label a problem “easy”
if both configurations require less than 10000 milliseconds, and
otherwise, we label it “hard”. 62

8.3 A pairwise comparison between Mimir-lifted and Powerlifted on
the STRIPS benchmark, comparing the total time in milliseconds
required to find a plan. We label a problem “easy” if both config-
urations require less than 10000 milliseconds, and otherwise, we
label it “hard”. 63

x

List of Tables

3.1 Comparison of the search algorithms LAMA, Dual-BFWS (BFWS),
SIW(2), and SIWR(2) on several planning domains, showing the
number of solved problems (S) and, for commonly solved prob-
lems, the maximum runtime (T) in seconds, along with the average
(A) and maximum (M) effective width across all encountered sub-
problems. We use boldface to denote the highest number of solved
problems. 21

4.1 Comparison of learning sketches for a class of problems 𝒬 with
width 𝑘 upper bounded by 0, 1 and 2, showing the peak memory in
GiB (M), the total wall-clock time in hours for solving the ASP on
32 CPU cores (T), the total number of states in the last iteration of
the curriculum learning procedure (#S), the number of selected
features (#Φ), and the number of sketch rules (#R). We denote
failures by “–” and report the reasons in the text. 27

5.1 Comparison of learning hierarchical policies Π𝑘 for a class of prob-
lems 𝒬 for 𝑘 equal to 0, 1 and 2, showing the peak memory in GiB
(M), the total CPU time in hours for solving the ASP on 32 CPU
cores (T), the highest number of states for the last iteration of the
curriculum learning procedure (#S), the number of selected fea-
tures (#Φ), and the maximum branching factor (#R). We denote
failures by “–” and report the reasons in the text. 37

6.1 Comparison of learning general policies with equivalence-based
reductions and without, showing the memory usage in GiB (M),
the wall-clock time in seconds (T), the total number of states in
the training set (#S) and the reduced training set (#S/∼𝑖𝑠𝑜), and
ratios for the speedup in time and the reduction in the number
of states. We use boldface to highlight the winner in a pairwise
comparison, i.e., the one that needed strictly fewer resources. . . 46

xi

7.1 Overview of the number of conflicts detected in our benchmark
sets, showing the number of problems used in our experiments
(#𝒬), the number of total states (#S), the number of equivalence
classes where states of each problem are partitioned individually
(#S/∼𝑖𝑠𝑜), the number of expressivity conflicts caused by 1-WL and
2-FWL (#E), and the number of E-conflicts where states have the
same optimal goal distance V* (#V). 52

8.1 Comparison of the planner configurations on three benchmark sets:
hard-to-ground (HTG), optimal STRIPS (STRIPS), and optimal
ADL (ADL) of the International Planning Competition (IPC), show-
ing the total number of solved problems (Coverage), the geometric
mean of the total time in milliseconds (Total Time), and the search
time in milliseconds (Search Time). We denote configurations
with insufficient PDDL language support on a benchmark set by
“–”. We highlight the best configuration with boldface. 60

xii

1 Introduction

Classical planning aims to find a plan that is a sequence of actions allowing
an intelligent agent to move from its current situation to one that satisfies
the goal. Finding a plan is computationally challenging as plan existence is
already PSPACE-complete (Bylander 1994). Heuristic search (Hart et al. 1968)
is one of the most effective methods for addressing classical planning problems,
utilizing heuristics as goal distance estimators to guide the search toward the
goal state. These heuristics derive from problem simplification, which may
result in exponential worst-case search behavior (Bonet and Geffner 2001).

In the real world, agents often face structurally similar problems with varying
objects but the same predicates used to describe the world, actions to act in
the world, and related goals. For example, Figure 1.1 illustrates two problems
in a discretized household environment where the goal is to do the laundry.
Each problem has a robot with limited actions, such as moving between cells,
grasping, and releasing objects. A plan for the first problem in Figure 1.1a
is to move right, pick the laundry piece, move right, and drop the piece in
the machine, while the second problem in Figure 1.1b requires to move both
laundry pieces to the machine. A generalized planning problem considers a
class of structurally similar problems (Jiménez et al. 2019). Unlike classical
planning, which aims to find a plan for a single problem, generalized planning
aims to find a general plan that compactly encodes efficiently obtainable plans
for all problems of a class. Hence, compact general plans only exist for tractable

1

1. Introduction

(a) First problem. (b) Second problem.

Figure 1.1: The illustration shows two discretized problems from the class of
problems for doing the laundry. Each problem has a robot, a washing machine,
a varying-sized grid, and various laundry pieces.

classes and exclude, for example, NP-hard classes unless P = NP (Garey and
Johnson 1979). Unlike heuristics, general plans are often learned from small
examples (e.g., Francès, Bonet, et al. 2021; Ståhlberg, Bonet, et al. 2023). For
example, a general plan in natural language for the class of problems for doing
the laundry might consist of the following steps: moving the robot to a laundry
piece, picking it up, moving to the washing machine, placing the piece in the
machine, repeating this process until all laundry pieces are in the machine,
stopping if the machine is full, followed by launching the washing program.

Natural language is not ideal for representing general plans in computers
because it is highly expressive and allows for ambiguities. Target languages
are more suitable and come with well-defined syntax and semantics. Promi-
nent examples from the literature are general policies (Francès, Bonet, et al.
2021), programs (Segovia-Aguas et al. 2019), linear temporal logics (LTL)
(Bacchus and Kabanza 2000), reward machines (Icarte et al. 2022), and graph
neural networks (Ståhlberg, Bonet, et al. 2022a). Deep learning and neural
networks are among the most scalable approaches to artificial intelligence,
demonstrated through numerous remarkable successes in the past decade.
However, neural networks are difficult or impossible to understand. Formal
target languages such as general policies, programs, LTL, or reward machines
offer an interpretable but less scalable framework for automated learning.

Subgoal structures represent an important family of general plans, focusing on
intermediate goals that an agent must achieve to progress toward its overall
goal. Unlike general policies, which encode low-level behavior in terms of
immediate actions, subgoals provide flexibility by allowing the behavior needed
to achieve them to be tailored towards the specific environment (Zheng et al.
2020). For example, in Figure 1.1b, a subgoal for doing the laundry may be to
place a single piece into the washing machine. It requires the robot to execute
several actions that depend on its current location.

2

This thesis introduces a method that learns subgoal structures over the formal
policy sketches language (Bonet and Geffner 2021; Bonet and Geffner 2024).
Policy sketches define subgoals by constraining qualitative feature changes.
Unlike LTL formulas in planning (Bacchus and Kabanza 2000), intrinsic reward
functions in deep reinforcement learning (Zheng et al. 2020) or symbolic
reward machines in reinforcement learning (Icarte et al. 2022), our method
learns to split planning problems into subproblems with strictly polynomial
complexity characterized by the notion of width (Lipovetzky and Geffner 2012).
For example, the single sketch rule {𝑢 > 0} ↦→ {𝑢↓} says that decreasing the
number of laundry pieces that are not yet in the machine (𝑢↓) is good. Our
method for learning policy sketches employs combinatorial optimization to find
the simplest solution, measured by its syntactic complexity. Our syntactically
optimized solutions are human-interpretable, enabling us to often manually
show their correctness for an entire target class of problems.

While subgoal structures are reliable in solving planning problems, they often
do not represent plans on multiple levels of abstraction. However, humans
efficiently solve complex real-world problems by planning on multiple levels
of abstraction (LeCun 2022). A long-standing open research question in ar-
tificial intelligence is how to learn an effective hierarchical representation of
plans without supervision. Despite decades of interest in hierarchical planning,
whether in model-based approaches (Sacerdoti 1974; Tate 1977; Erol et al.
1994) or model-free reinforcement learning (Parr and Russell 1997; Dietterich
2000; Barto and Mahadevan 2003), the problem of learning effective hierarchi-
cal structures without supervision remains an open challenge. A central issue
is the absence of precise characterizations for describing and uncovering effective
hierarchical structures (Drexler, Seipp, and Geffner 2023). In this thesis, we
shed light on this problem by using policy sketches to iteratively split classes
of problems into subclasses of problems whose polynomial complexity strictly
decreases characterized by the width. For instance, placing all laundry pieces
in the machine is a problem with unbounded complexity. Decomposing it into
subproblems, such as placing one piece at a time, reduces the width to two.

When our learning methods fail, it typically results from limited scalability
or a lack of language expressivity. We develop two methods to address these
limitations. First, we develop equivalence-based abstractions based on state
symmetries to reduce redundancy in training sets and improve learning effi-
ciency. Second, we develop a method for testing the expressivity requirements
of benchmark sets using first-order logic. Our method does not give strong
guarantees for learning compact general plans for our training sets. However,
our findings often show empirical alignment with previous work on learning
general policies with graph neural networks (Ståhlberg, Bonet, et al. 2023).
A general result is that a simple formal language called 𝑘-variable first-order
logics with counting quantifiers restricted to at most three variables (C3) is

3

1. Introduction

sufficient for all our considered benchmark sets, indicating that manageable
expressive power often suffices.

This thesis also makes steps in building a unified framework for generalized
planning by extending the Mimir planning library (Ståhlberg 2023). One of
the key strengths of generalized planning is that general plans are highly infor-
mative. Hence, an exponential preprocessing step called grounding (Helmert
2009) that aims at improving runtime efficiency but limits the size of manage-
able problems is often unnecessary. Instead, our library works directly on the
first-order problem representation, allowing general plans to be executed on
problem sizes out of reach for search methods that require the ground problem
representation (Drexler, Seipp, and Geffner 2024). Our novel contribution
is the support for expressive language features, including conditional effects
and derived predicates, that cannot be concisely compiled away (Nebel 2000;
Thiébaux et al. 2005). Our experimental evaluation shows that our library is
competitive with state-of-the-art systems.

Our findings contribute to the practical and theoretical foundation of general-
ized planning by providing characterizations and methods for learning subgoal
structures, abstractions based on state symmetries for more efficient learning,
tools to explain failures of learning general plans, and an expressive planning
library focusing on generalized planning.

1.1 Outline
This thesis is structured as follows. In Chapter 2, we define the preliminaries
of the thesis. In particular, we define classical planning, generalized planning,
planning width, policy sketches, description logics, relational structures, and
graphs. In Chapter 3, we analyze through examples whether policy sketches is a
good language for capturing the subgoal structure in generalized planning. We
conclude the chapter with an empirical evaluation, showing the computational
value of policy sketches of bounded width on several planning domains. In
Chapter 4, we present a combinatorial method for learning policy sketches
of bounded width from small examples without supervision. In Chapter 5,
we present a combinatorial method for learning hierarchical policies based
on the method for learning sketches. In Chapter 6, we present a general
method for generating equivalence-based abstractions to reduce redundancy
in training sets. In Chapter 7, we present a method for testing the language
expressivity requirements of benchmark sets. In Chapter 8, we present a
planning library tailored towards generalized planning supporting expressive
language features and an empirical evaluation against state-of-the-art systems.
Chapter 9 summarizes and concludes this thesis.

4

1.2. Published Works

1.2 Published Works
We published the core results at leading AI, AI planning, and knowledge
representation conferences. The following publications form the foundation of
this thesis. At the start of each chapter, we highlight the relevant publications
that form its foundation. Each core paper is attached in its publication form at
the end of the thesis.

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2024). “Ex-
pressing and Exploiting Subgoal Structure in Classical Planning Using
Sketches”. In: Journal of Artificial Intelligence Research 80, pp. 171–208.

– Dominik Drexler, Jendrik Seipp, and Hector Geffner (2021). “Ex-
pressing and Exploiting the Common Subgoal Structure of Clas-
sical Planning Domains Using Sketches”. In: Proceedings of the
Eighteenth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2021). Ed. by Esra Erdem, Meghyn
Bienvenu, and Gerhard Lakemeyer. IJCAI Organization, pp. 258–
268. (superseded)

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2022). “Learning
Sketches for Decomposing Planning Problems into Subproblems of
Bounded Width”. In: Proceedings of the Thirty-Second International
Conference on Automated Planning and Scheduling (ICAPS 2022). Ed. by
Sylvie Thiébaux and William Yeoh. AAAI Press, pp. 62–70.

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2023). “Learning
Hierarchical Policies by Iteratively Reducing the Width of Sketch Rules”.
In: Proceedings of the Twentieth International Conference on Principles
of Knowledge Representation and Reasoning (KR 2023). Ed. by Pierre
Marquis, Tran Cao Son, and Gabriele Kern-Isberner. IJCAI Organization,
pp. 208–218.

• Dominik Drexler, Simon Ståhlberg, Blai Bonet, and Hector Geffner
(2024b). “Symmetries and Expressive Requirements for Learning Gen-
eral Policies”. In: Proceedings of the Twenty-First International Conference
on Principles of Knowledge Representation and Reasoning (KR 2024). IJ-
CAI Organization.

– Dominik Drexler, Simon Ståhlberg, Blai Bonet, and Hector Geffner
(2024a). “Equivalence-Based Abstractions for Learning General
Policies”. In: ICAPS 2024 Workshop on Bridging the Gap Between
AI Planning and Reinforcement Learning (PRL). (superseded)

5

1. Introduction

The following publications also resulted from my doctoral research but are
not central to this thesis. However, we will discuss some of their ideas and
concepts in this thesis.

• Blai Bonet, Dominik Drexler, and Hector Geffner (2024). “On Policy
Reuse: An Expressive Language for Representing and Executing General
Policies that Call Other Policies”. In: Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS
2024). Ed. by Sara Bernardini and Christian Muise. AAAI Press, pp. 31–
39.

– Blai Bonet, Dominik Drexler, and Hector Geffner (2023). “General
and Reusable Indexical Policies and Sketches”. In: NeurIPS 2023
Workshop on Generalization in Planning. (superseded)

• Dominik Drexler, Javier Segovia-Aguas, and Jendrik Seipp (2022).
“Learning General Policies and Helpful Action Classifiers from Partial
State Spaces”. In: IJCAI 2022 Workshop on Generalization in Planning.

• Dominik Drexler and Jendrik Seipp (2023). “DLPlan: Description Logics
State Features for Planning”. In: ICAPS 2023 System Demonstrations
and Exhibits.

• Dominik Drexler, Daniel Gnad, Paul Höft, Jendrik Seipp, David Speck,
and Simon Ståhlberg (2023). “Ragnarok”. In: Tenth International
Planning Competition (IPC-10): Planner Abstracts.

• Dominik Drexler, Jendrik Seipp, and David Speck (2023). “Odin: A
Planner Based on Saturated Transition Cost Partitioning”. In: Tenth
International Planning Competition (IPC-10): Planner Abstracts.

6

2 Preliminaries

This chapter defines classical planning, generalized planning, planning width,
policy sketches, description logics, relational structures, and graphs. In the
following, if not explicitly mentioned, we assume sets to be finite.

2.1 Classical Planning
Classical planning is the problem of finding an action sequence that allows
an intelligent agent to move from its current situation to one that satisfies a
given goal. The central assumptions are a fully observable environment and
deterministic actions, where each action produces a predictable outcome. A
planning domain defines predicate symbols for describing the environment
and action schemas for describing interactions with the environment.

Definition 1 (Planning Domain). A (first-order) planning domain or simply
domain is a pair 𝒟 = ⟨ℛ, 𝒜⟩ where:

• ℛ is a set of predicates (or relations) of the form 𝑝/𝑘, where 𝑝 is the
name, and 𝑘 is the arity, and

• 𝒜 is a set of deterministic first-order action schemas.

7

2. Preliminaries

Example 1. The laundry domain consists of the following predicate symbols
and action schemas.1 The predicate symbols are robot/1, piece/1, and loc/1 to
describe the type of an object, at/2 to describe the location of a laundry piece,
the robot, carry/2 to describe the laundry piece being carried by the robot,
and holding/1 to describe whether the robot is holding a laundry piece, adj/2
to describe that two locations are adjacent. The action schemas are pick(𝑎, 𝑝, 𝑙)
allowing the robot 𝑎 to pick up 𝑝 at 𝑙 when its hand is empty and both are at
location 𝑙, drop(𝑎, 𝑝, 𝑙) for the inverse operation, and move(𝑎, 𝑙, 𝑙′) to move the
robot 𝑎 between adjacent locations 𝑙 and 𝑙′.

In a planning domain, predicates describe relationships among variables, and
action schemas describe how the relationships among variables may change
deterministically. Grounding replaces each variable in a predicate or action
schema with an object. Grounding a predicate produces a ground atom
describing the relationship between the objects. A state 𝑠 is a set of ground
atoms where all ground atoms not in 𝑠 are assumed to be false. Similarly,
grounding an action schema produces a ground action describing how object
relationships change. We do not explicitly restrict the action schema structure
but require that we can detect whether a ground action is applicable in a state.
Moreover, we require that we can compute the unique successor state 𝑠′ when
applying an applicable ground action 𝑎 in a state 𝑠. A state pair (𝑠, 𝑠′) is in the
relation Succ if a ground action 𝑎 is applicable in 𝑠 and produces the successor
state 𝑠′. A trajectory from a state 𝑠1 to 𝑠𝑛 is a state sequence 𝑠1, 𝑠2, . . . , 𝑠𝑛

such that (𝑠𝑖, 𝑠𝑖+1) is in Succ, for all 1 ≤ 𝑖 < 𝑛. A planning problem over a
planning domain defines a set of objects, the initial and goal situations, and
the objective of finding a plan, which is a goal-achieving trajectory.

Definition 2 (Planning Problem). A planning problem or simply problem
over a planning domain is a pair 𝑃 = ⟨𝒟, ℐ⟩ where 𝒟 is the planning domain
and ℐ = ⟨𝑂, 𝑠0, 𝛾⟩ is problem-specific information consisting of

• 𝑂 is the set of objects,

• 𝑠0 is the initial state describing the current situation,

• 𝛾 is a set of ground atoms describing a goal situation, which induces a
set of goal states 𝐺 = {𝑠 ∈ 𝑆 | 𝑠 ⊇ 𝛾} where 𝑆 is the set of all states,

where the objective is to find a plan for 𝑠0, i.e., a trajectory from 𝑠0 to a state
𝑠 in 𝐺. A plan for 𝑠 with minimal length is optimal with length denoted by
𝑉 *(𝑠). A state 𝑠 is solvable if there is a plan for 𝑠, and otherwise, unsolvable.
A state 𝑠 is reachable in 𝑃 if there is a trajectory from 𝑠0 to 𝑠. We write 𝑃 [𝑠, 𝐺]
for a problem like 𝑃 but with initial state 𝑠 and arbitrary goal states 𝐺.

8

2.2. Generalized Planning

𝑙1 𝑙2 𝑙3
𝑎

𝑝

Figure 2.1: The illustration shows a problem over the laundry domain. A robot,
a laundry piece, and a washing machine are in a grid with three locations.

Example 2. Figure 2.1 (same as Figure 1.1a) shows the initial state 𝑠0 of
a problem 𝑃 over the laundry domain. The set of objects consists of three
locations 𝑙1, 𝑙2 and 𝑙3, from left to right, a laundry piece 𝑝, and the robot 𝑎. The
robot 𝑎 is at location 𝑙1, i.e., at(𝑎, 𝑙1) is true. The laundry piece is at location 𝑙2.
The washing machine is not an explicit object but acts as a marker for the goal
location of the laundry pieces, i.e., at(𝑝, 𝑙3) is in the goal 𝛾 of 𝑃 . We say that
a laundry piece is delivered if and only if it is at the goal location; otherwise,
we say it is undelivered. The action sequence ⟨move(𝑎, 𝑙1, 𝑙2), pick(𝑎, 𝑝, 𝑙2),
move(𝑎, 𝑙2, 𝑙3), drop(𝑎, 𝑝, 𝑙3)⟩ achieves the goal, i.e., when sequentially applied
from 𝑠0, produces an optimal plan for 𝑠0.

Notice that we define a plan for a state as a trajectory, i.e., state sequence, to
a goal state and not as an action sequence. However, given a trajectory, we
can easily reconstruct an action sequence with identical length. A problem
induces a state space that fully captures the dynamics of a problem but where
the actions are compiled away because we will never explicitly refer to them.
We will use state spaces to learn solutions for a generalized planning problem.

Definition 3 (Induced State Space). The state space induced by a problem 𝑃

is a tuple 𝑆𝑃 = ⟨𝑆, 𝑠0, 𝐺, Succ⟩ where 𝑆 is the set of all states, 𝑠0 is the initial
state, 𝐺 are the goal states of 𝑃 , and Succ is the successor relation.

2.2 Generalized Planning
Generalized planning extends classical planning to address classes of struc-
turally similar problems within a common planning domain and requires
scalable solution algorithms for any problem in the class (Jiménez et al. 2019).

Definition 4 (Generalized Planning Problem). A generalized planning prob-
lem is a possibly infinite set 𝒬 of problems over a planning domain 𝒟. The
objective is to find a general plan for 𝒬, i.e., an algorithm that solves any
problem 𝑃 in 𝒬 in time that is polynomial in a reasonable representation size
of 𝑃 .

1The domain is like the Delivery domain (Bonet and Geffner 2021).

9

2. Preliminaries

There is no general plan for classes of problems 𝒬 that are computationally
intractable, e.g., NP-hard, unless P = NP, such as the traveling salesperson
problem class (Garey and Johnson 1979). While avoidable, we assume for
simplicity that 𝒬 is closed, i.e., if 𝑃 is in 𝒬, then all problems that are like 𝑃

but with initial state 𝑠 that are solvable and reachable in 𝑃 are in 𝒬, enforcing
a general plan to solve those states 𝑠 too (Drexler, Seipp, and Geffner 2022).

Example 3. The class of problems over the laundry domain 𝒬L consists of
infinitely many problems over the laundry domain from Example 1 restricted
to a single robot with the common objective of moving all laundry pieces to
the location of the washing machine. The class 𝒬L includes the problem in
Example 2. A general plan for 𝒬L might outline a sequence of actions: moving
towards an undelivered laundry piece, picking it up, moving to the machine,
dropping it, and repeating until all pieces are in the machine.

2.3 Planning Width
The width (Lipovetzky and Geffner 2012) of a problem is an integer 𝑘 that mea-
sures the difficulty of finding an optimal plan. The iterative width algorithm
(IW) can efficiently find a plan for problems with small width.

Definition 5 (Width). The width 𝑤(𝑃) of a problem 𝑃 with initial state 𝑠0
and arbitrary goal states 𝐺 is the minimum 𝑘 for which there exists a sequence
𝑡0, 𝑡1, . . . , 𝑡𝑚 of tuples 𝑡𝑖 each with at most 𝑘 ground atoms from 𝑃 , such that:

1. 𝑃 [𝑠0, 𝐺𝑡0] has an optimal plan of length 0, i.e. 𝑡0 holds in 𝑠0,

2. any optimal plan for 𝑃 [𝑠0, 𝐺𝑡𝑖
] can be extended into an optimal plan

for 𝑃 [𝑠0, 𝐺𝑡𝑖+1] by adding a single action, for all 1 ≤ 𝑖 < 𝑚, and

3. any optimal plan for 𝑃 [𝑠0, 𝐺𝑡𝑚] is an optimal plan for 𝑃 [𝑠0, 𝐺],

where, each tuple 𝑡𝑖 induces (sub-)goal states 𝐺𝑡𝑖
= {𝑠 ∈ 𝑆 | 𝑠 ⊇ set(𝑡𝑖)} and

set(𝑡𝑖) denotes the interpretation of 𝑡𝑖 as a set of ground atoms.

If 𝑃 has an optimal plan of length at most 1, we set 𝑤(𝑃) = 0. The width
𝑤(𝒬) of a class of problem 𝒬 is the maximum width 𝑤(𝑃) of any problem
𝑃 in 𝒬. If the width of a problem 𝑃 is 𝑤(𝑃) = 𝑘, then the iterative width
algorithm IW(𝑘) finds an optimal plan for 𝑃 in time that is exponential in 𝑘.
The IW(𝑘) algorithm is a breadth-first search that prunes a newly generated
state if it does not make a set of at most 𝑘 state atoms true for the first time.
The IW algorithm runs IW(𝑘) in sequence for 𝑘 = 0, 1, 2, . . . until the problem
is solved or found to be unsolvable. The effective width is the smallest 𝑘 for
which IW(𝑘) solves 𝑃 and a plan may be suboptimal if 𝑘 is less than 𝑤(𝑃).

10

2.4. Policy Sketches

Example 4. The width of a problem over the laundry domain with 𝑛 laundry
pieces is unbounded. The width of a problem with a laundry single piece is 2.
Since the width is 2, IW efficiently finds a plan (Bonet and Geffner 2021).

2.4 Policy Sketches
Policy sketches is a language for temporal abstraction in classical planning
(Bonet and Geffner 2021). The policy sketches language uses the same syntax
as the language of general policies but with more general semantics (Francès,
Bonet, et al. 2021). General policies aim to specify immediate single step
subgoal states while policy sketches specify subgoal states possibly further away.
A key component of policy sketches are features to define state abstractions.

A feature 𝑓 is a state function. There are two types of features. A Boolean
feature 𝑝 maps a state 𝑠 in 𝑃 in 𝒬 into the Boolean domain, and a numerical
feature 𝑛 maps a state into the non-negative integers.

A Boolean feature condition is an expression of the form 𝑝 or ¬𝑝 for a Boolean
feature 𝑝, and 𝑛 = 0 or 𝑛 > 0 for a numerical feature 𝑛. A state 𝑠 in 𝑃 in 𝒬
satisfies the condition 𝑝 (resp. ¬𝑝) iff 𝑝 (resp. ¬𝑝) is true in 𝑠, and the condition
𝑛 = 0 (resp. 𝑛 > 0) iff 𝑛(𝑠) = 0 (resp. 𝑛(𝑠) > 0).

A Boolean feature effect is an expression of the form 𝑝, ¬𝑝, or 𝑝? for a Boolean
feature 𝑝, and 𝑛↑, 𝑛↓, or 𝑛? for a numerical feature 𝑛. A state pair [𝑠, 𝑠′] in 𝑃

in 𝒬 satisfies the effect 𝑝 (resp. ¬𝑝) iff 𝑝 (resp. ¬𝑝) is true in 𝑠′, and the effect
𝑛↑ (resp. 𝑛↓) iff 𝑛(𝑠) < 𝑛(𝑠′) (resp. 𝑛(𝑠) > 𝑛(𝑠′)). The state pair [𝑠, 𝑠′] always
satisfies the effects 𝑝? and 𝑛?.

A sketch rule 𝑟Φ over features Φ has form 𝐶 ↦→ 𝐸 where 𝐶 is a set of Boolean
feature conditions and 𝐸 is a set of Boolean feature effects. We write 𝑟 for 𝑟Φ
if the set of features is clear from the context. A state pair [𝑠, 𝑠′] is compatible
with a sketch rule 𝑟Φ = 𝐶 ↦→ 𝐸 iff 𝑠 satisfies all conditions in 𝐶, [𝑠, 𝑠′] satisfies
all effects in 𝐸, and all features 𝑓 in Φ that do not occur in 𝐸 must stay the
same, i.e., 𝑝(𝑠) = 𝑝(𝑠′) and 𝑛(𝑠) = 𝑛(𝑠′). The set of subgoal states 𝐺𝑟Φ(𝑠)
of a sketch rule 𝑟 is the set of states {𝑠′ | [𝑠, 𝑠′] is compatible with 𝑟Φ}, and is
extended to include the induced goal states 𝐺𝛾 of a given problem 𝑃 .

Example 5. Consider the laundry domain 𝒬L from Example 3 and the set of
features Φ = {𝑢}, where 𝑢 is the number of undelivered laundry pieces. The
sketch rule 𝑟 = {𝑢 > 0} ↦→ {𝑢↓} over Φ specifies that the subgoal states 𝐺𝑟(𝑠)
for a state 𝑠 in a problem 𝑃 contains the goal states 𝐺 of 𝑃 and the subgoal
states where the number of undelivered laundry pieces decreases (𝑢↓). For
simplicity, we describe such subgoal states by saying that delivering a laundry
piece is “good”. We will use similar intuitive phrasings throughout the thesis.

11

2. Preliminaries

Definition 6 (Policy sketch). A policy sketch (or sketch) 𝑅Φ over a set of
features Φ for a class of problems 𝒬 is a set of sketch rules over Φ. The set
of subgoal states 𝐺𝑅Φ(𝑠) of a sketch 𝑅Φ is the set of states ∪𝑟∈𝑅Φ𝐺𝑟(𝑠). We
write 𝑅 for a sketch 𝑅Φ if the set of features is clear from the context.

Example 6. We extend the Example 5 by adding another feature 𝐻 to Φ that
is true if and only if the robot holds a laundry piece. The sketch 𝑅 consists of
two rules 𝑟1 and 𝑟2 over Φ where rule 𝑟1 = {𝑢 > 0, 𝐻} ↦→ {𝑢↓, ¬𝐻} and rule
𝑟2 = {𝑢 > 0, ¬𝐻} ↦→ {𝐻}. Rule 𝑟1 says that delivering a laundry piece to the
goal location is good (𝑢↓) when holding one (𝐻), and rule 𝑟2 says that getting
hold of an undelivered laundry piece is good (𝐻) when not holding one (¬𝐻).
Notice that 𝑟2 does not affect 𝑢, enforcing that 𝑢 does not change.

For enabling efficient planning for problems of a target class of problem 𝒬,
sketches must have bounded width and be acyclic. These properties, which
we define next, lay the foundation for algorithms like SIWR, which leverages
them to decompose and solve problems iteratively (Bonet and Geffner 2021;
Bonet and Geffner 2024).

The SIWR algorithm is a variant of the SIW algorithm (Lipovetzky and Geffner
2012) for solving any problem 𝑃 in 𝒬. The SIWR algorithm tracks the current
state 𝑠, initially set to the initial state 𝑠0, and iteratively solves the subproblem
𝑃 [𝑠, 𝐺𝑅(𝑠)] to find a subgoal state 𝑠′ in 𝐺𝑅(𝑠). After finding 𝑠′, the algo-
rithm updates 𝑠 = 𝑠′ and repeats this process until 𝑠 is a goal state of 𝑃 .
Bounded sketch width ensures that IW solves each subproblem 𝑃 [𝑠, 𝐺𝑅(𝑠)] ef-
ficiently (Bonet and Geffner 2021). Sketch acyclicity ensures that the iterative
subproblem-solving process of SIWR never re-encounters subproblems, and
hence, prohibits infinite execution (Drexler, Seipp, and Geffner 2022).

Definition 7 (Sketch width). The width 𝑤𝑅(𝒬) of a sketch 𝑅 over a
closed class of problems 𝒬 is 𝑤𝑅(𝒬) = max𝑃 ∈𝒬 𝑤(𝑃 [𝑠0, 𝐺𝑅(𝑠0)]) where each
𝑃 [𝑠0, 𝐺𝑅(𝑠0)] is a problem with initial state 𝑠0 and goal states 𝐺𝑅(𝑠0).

Definition 8 (Sketch acyclicity). A sketch 𝑅 is acyclic in 𝒬 if there is no
sequence of states 𝑠1, . . . , 𝑠𝑛 with 𝑠1 = 𝑠𝑛 over the reachable states of any
problem 𝑃 in 𝒬 such that [𝑠𝑖, 𝑠𝑖+1] is compatible with 𝑅, for all 0 ≤ 𝑖 < 𝑛.

Theorem 1. Consider a class of problems 𝒬 and an acyclic sketch 𝑅 over feature
Φ whose width 𝑤𝑅(𝒬) is bounded by 𝑘, i.e., 𝑤𝑅(𝒬) ≤ 𝑘. The SIWR algorithm
solves any 𝑃 in 𝒬 in time 𝒪(𝑁 |Φ|(𝑁𝑘+1+𝑏𝑁2𝑘−1)) and space 𝒪(𝑏𝑁𝑘) producing
a plan of length 𝒪(𝑁 |Φ|+𝑘) where 𝑏 bounds the branching factor in 𝑃 , i.e., the
maximum number of applicable ground actions in a state in 𝑃 , 𝑁 is the number
of ground atoms in 𝑃 (Bonet and Geffner 2021; Bonet and Geffner 2024).

12

2.5. Description Logics

Theorem 1 assumes that all features 𝑓 in Φ are linear, i.e., 𝑓 can be evaluated
in a state in time 𝒪(𝑁), and take values from {𝑓(𝑠) | 𝑠 ∈ 𝑆} of size 𝒪(𝑁).
This thesis assumes that all features are polynomial, i.e., the time complexity
and the number of possible feature values are polynomially upper-bounded
in the size of a reasonable problem representation. These higher complexities
introduce polynomial factors into the time complexity of SIWR but the runtime
of SIWR remains exponential in |Φ| and 𝑘. Thus, given an acyclic policy sketch
𝑅 over a fixed set of polynomial features Φ whose width is bounded by 𝑘 for a
class of problems 𝒬, SIWR solves any problem 𝑃 in 𝒬 in polynomial time.

2.5 Description Logics
Description logics (Baader et al. 2003) is a knowledge representation language
where concepts represent unary relations and roles represent binary relations
over the universe Δ. In classical planning, for a state 𝑠 in a problem 𝑃 , the
universe Δ𝑠 is the set of objects 𝑂 in 𝑠. The idea of using description logics in
planning stems from work on learning general policies (Martín and Geffner
2000) and was used in several subsequent works (e.g., Fern et al. 2004; Bonet
and Geffner 2018; Francès, Corrêa, et al. 2019; Ståhlberg, Francès, et al. 2021;
Francès, Bonet, et al. 2021; Ferber et al. 2022). Similarly, we use a description
logics to represent features for classes of problems 𝒬.

We follow the grammar definition from work on learning general policies
(Francès, Bonet, et al. 2021). This thesis only shows the subset of rules we
explicitly refer to, where 𝐶, 𝐷 are concepts and 𝑅, 𝑆 are roles.

• atomic concept (resp. role) 𝑝 for unary (resp. binary) predicate 𝑝 in
predicates ℛ of domain 𝒟 with denotation 𝑝𝑠 = {𝑜 | 𝑝(𝑜) ∈ 𝑠},

• atomic goal concept (resp. role) 𝑝𝑔 for unary (resp. binary) predicate 𝑝

in predicates ℛ of domain 𝒟 with denotation 𝑝𝑠
𝑔 = {𝑜 | 𝑝(𝑜) ∈ 𝛾},

• universal concept ⊤ with denotation ⊤𝑠 ≡ Δ𝑠,

• role-value mapping 𝑅 = 𝑆 with denotation

(𝑅 = 𝑆)𝑠 ≡ {𝑎 ∈ Δ𝑠 | (𝑎, 𝑏) ∈ 𝑅𝑠 ↔ (𝑎, 𝑏) ∈ 𝑆𝑠},

• concept intersection 𝐶 ⊓ 𝐷 with denotation (𝐶 ⊓ 𝐷)𝑠 = 𝐶𝑠 ∩ 𝐷𝑠,

• concept negation ¬𝐶 with denotation (¬𝐶)𝑠 ≡ Δ𝑠 ∖ 𝐶𝑠, and

• existential abstraction ∃𝑅.𝐶 with denotation

(∃𝑅.𝐶)𝑠 ≡ {𝑎 ∈ Δ𝑠 | ∃𝑏 : (𝑎, 𝑏) ∈ 𝑅𝑠 ∧ 𝑏 ∈ 𝐶𝑠}.

13

2. Preliminaries

Observe that atomic goal concepts and roles strictly require that the goal 𝛾 of
a problem is a set of ground atoms and, hence, signals a language limitation.
For a concept or role 𝑋, we write ‖𝑋𝑠‖ to denote the Boolean feature that
evaluates to false if 𝑋𝑠 is empty and true otherwise and |𝑋𝑠| for the numerical
feature that evaluates to the number of elements in 𝑋𝑠. The number of
grammar rule applications defines the syntactic complexity of a feature.

Example 7. Consider the feature 𝐻 from Example 6. We can represent 𝐻

using description logics grammar rules as 𝐻 ≡ ‖holding‖, which has a syntactic
complexity of two because the atomic concept holding has a complexity of one
and its composition to a Boolean feature results in a complexity of two.

2.6 Relational Structures and Graphs
In this section, we follow the notation of Drexler, Ståhlberg, et al. (2024b).
Consider a planning problem 𝑃 over domain 𝒟. Each state 𝑠 from 𝑃 induces
a relational structure A𝑠 with universe 𝑈𝑠 = 𝑂 for the set of objects 𝑂 in 𝑠,
signature that is the set of domain predicate ℛ, and interpretations 𝑝𝑠 ⊆ (𝑈𝑠)𝑘

for each predicate 𝑝/𝑘 in the planning domain 𝒟, where ⟨𝑜⟩ in 𝑝𝑠 iff the ground
atom 𝑝(𝑜) is in 𝑠. We assume fully relational structures that do not contain
functions or constants, which are adequate for our assumed classical planning
formalism.

Graphs can encode relational structures. We use isomorphisms between graph
encodings of relational structures to define state equivalence.

A directed graph, or graph, is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of vertices
and 𝐸 ⊆ 𝑉 2 is a set of edges. Two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) are
isomorphic, denoted by 𝐺 ≃𝑔 𝐺′, if there is a bijection 𝑓 : 𝑉 → 𝑉 ′ such that
(𝑢, 𝑣) in 𝐸 iff (𝑓(𝑢), 𝑓(𝑣)) in 𝐸′.

An undirected graph is a directed graph 𝐺 where 𝐸 is symmetric, i.e., (𝑣, 𝑤)
in 𝐸 iff (𝑤, 𝑣) in 𝐸.

A vertex-colored graph is a tuple 𝐺 = (𝑉, 𝐸, 𝜆) where (𝑉, 𝐸) is a graph,
and 𝜆 : 𝑉 → 𝒞 maps vertices to the colors in 𝒞. Two vertex-colored graphs
𝐺 = (𝑉, 𝐸, 𝜆) and 𝐺′ = (𝑉 ′, 𝐸′, 𝜆′) are isomorphic, denoted as 𝐺 ≃𝑔 𝐺′, iff
there is a color preserving isomorphism 𝑓 from 𝐺 to 𝐺′, i.e., 𝜆(𝑣) = 𝜆′(𝑓(𝑣)) for
𝑣 in 𝑉 .

We will use undirected vertex-colored graphs to represent the relational struc-
ture of a state. These graphs are designed so that applying the isomorphism to
the ground atoms of a state results in a state where the objects are in the same
relationship, just under a different object name.

14

3 Expressing the
Subgoal Structure

Core Publication of this Chapter

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2024). “Ex-
pressing and Exploiting Subgoal Structure in Classical Planning Using
Sketches”. In: Journal of Artificial Intelligence Research 80, pp. 171–208.

Researchers have introduced several languages for representing general plans,
including general policies (Francès, Bonet, et al. 2021), programs (Segovia-
Aguas et al. 2019), linear temporal logics (LTL) (Bacchus and Kabanza 2000),
and reward machines (Icarte et al. 2022), each offering unique strengths
and limitations. Unlike programs or policies that specify immediate low-
level operations or actions to take and, hence, require no search, LTL and
reward machines specify subgoals. These subgoals are higher-level abstractions
that may require the agent to execute several actions. These higher-level
abstractions extend beyond plan generation. They are more adaptable to
changes in environmental dynamics and can accelerate policy learning, such
as in environments with sparse rewards (Singh et al. 2010; Zheng et al. 2020).

We consider the recently introduced policy sketches language (Bonet and
Geffner 2021; Bonet and Geffner 2024) a direct generalization of general
policies that uses the same syntax but slightly different semantics. While

15

3. Expressing the Subgoal Structure

general policies specify immediate actions to take, policy sketches aim to
break problems into subproblems with controllable complexity through a single
parameter. Policy sketches incorporate planning width to characterize the
polynomial complexity of subproblems (Lipovetzky and Geffner 2012). Unlike
other approaches like LTL or reward machines, policy sketches incorporate an
explicit complexity constraint to characterize an effective decomposition.

One of the most competitive approaches to address generalized planning is
solving individual problems using heuristic search (Hart et al. 1968). These
methods compute problem-specific goal distance estimators, called heuristics,
to guide a search towards a goal state (e.g., Richter and Westphal 2010;
Hoffmann and Nebel 2001). However, while widely effective, heuristic search
struggles to exploit the structure in many problems. In the worst case, it scales
exponentially in the problem size (Bonet and Geffner 2001).

Width-based search algorithms overcome exponential worst-case behavior at
the cost of rendering the search incomplete. The iterative width (IW) algorithm
efficiently solves arbitrary-sized problems with small, bounded widths, which
applies to many classical planning benchmarks where the goal consists of
a single atom (Lipovetzky and Geffner 2012). However, many real-world
planning problems involve conjunctive goals involving multiple interacting
subgoals. For these problems, the serialized iterative width (SIW) algorithm
decomposes the problem into subproblems, achieving one goal atom one at a
time, and stops when solving the problem (Lipovetzky and Geffner 2017). SIW
is simple and effective for many problems. However, extensions that combine
it with heuristic search complicate understanding the resulting decomposition
and the interplay between heuristic guidance and width-based search.

Policy sketches build on the idea of problem decomposition and serialization
to express them in an interpretable way. Motivated by work in qualitative
numeric planning, a decidable fragment of numeric planning where Boolean
and numerical features change qualitatively (Bonet and Geffner 2020), policy
sketches provide a symbolic framework for defining temporal abstractions.
Using sketch rules to constrain qualitative feature changes, an acyclic sketch
𝑅 of bounded width can effectively guide the search process via the SIWR
algorithm. This approach is similar to SIW but focuses on identifying subgoal
states that satisfy sketch-imposed constraints (Bonet and Geffner 2021).

In this chapter, we investigate whether policy sketches are a suitable language
for representing common subgoal structures in classical planning domains. Our
example-driven approach evaluates handcrafted policy sketches of bounded
width across several tractable classical planning domains from the International
Planning Competition, which are known to challenge heuristic search and
width-based methods. Each policy sketch consists of only a few rules and

16

3.1. Example Policy Sketch

features designed to exploit the structural properties of these domains. We
empirically compare the handcrafted policy sketches against state-of-the-art
heuristic search methods to validate their theoretical advantages. To illustrate
their intrinsics, it follows a presentation and discussion of the handcrafted
policy sketch for the Childsnack domain.

3.1 Example Policy Sketch
This section presents the handcrafted policy sketch (Drexler, Seipp, and Geffner
2024) for the Childsnack domain, a benchmark from the International Plan-
ning Competition. Unlike the previous presentation of the sketch, we place
additional emphasis on the feature representations, which are critical for
understanding its computational value.

We begin by introducing the Childsnack domain and outlining its class of
problems. Next, we define a set of features that capture the key domain
aspects, focusing on their computational and syntactic complexity. Finally, we
present the policy sketch and demonstrate that it is acyclic and has a bounded
width, ensuring that it can be used with the SIWR algorithm to solve any
problem in the domain in polynomial time.

3.1.1 Domain Description
In the Childsnack domain (Vallati et al. 2018), objects include contents, trays,
bread, children, a kitchen, and tables. Contents and bread can be regular
or gluten-free, and children may be allergic to gluten. The domain features
actions for creating regular or gluten-free sandwiches using corresponding
types of content and bread. Sandwiches can be placed on trays in the kitchen
and transported to different places. If a tray is at a table with a child, the sand-
wich can be served, provided it meets the constraint that regular sandwiches
cannot be served to gluten-allergic children. The domain defines the following
predicates to define states with their intuitive meanings:

• waiting(c : child, p : place),

• served(c : child),

• notexists(s : sandwich),

• ontray(s : sandwich, t : tray),

• not-allergic-gluten(c : child),

• allergic-gluten(c : child),

17

3. Expressing the Subgoal Structure

• at(t : tray, p : place),

• at-kitchen-bread(b : bread-portion),

• at-kitchen-content(c : content-portion),

• at-kitchen-sandwich(s : sandwich),

• no-gluten-bread(b : bread-portion),

• no-gluten-content(c : content-portion),

• no-gluten-sandwich(s : sandwich).

In the initial state, children are seated at their tables, and trays are either
in the kitchen or at the tables. The problem is solvable with enough gluten-
free content and bread available to serve all children. The goal is to serve a
sandwich to each child. Goal serialization using SIW fails: serving gluten-free
sandwiches to non-allergic children can lead to unsolvable states if too few
remain for those who need them. Our sketch will fix this issue by ensuring
that gluten-free sandwiches are only served to gluten-allergic children.

3.1.2 Features
In the Childsnack domain, we define a set Φ comprising six key features. It
contains two numerical features ca and cr to track the number of unserved
gluten-allergic, respectively, non-gluten-allergic children, two Boolean features
sk

a and sk to track the availability of a gluten-free sandwich, respectively, any
sandwich, in the kitchen, and two Boolean features st

a and st to track the
availability of a gluten-free sandwich on a tray, respectively, any sandwich on
a tray. We define the set of features Φ over the domain predicates as follows:

ca ≡ |allergic-gluten ⊓ served𝑔 ⊓ ¬served|
cr ≡ |not-allergic-gluten ⊓ served𝑔 ⊓ ¬served|
sk

a ≡ ‖at-kitchen-sandwich ⊓ no-gluten-sandwich‖
sk ≡ ‖at-kitchen-sandwich‖
st

a ≡ ‖∃ontray.⊤ ⊓ no-gluten-sandwich‖
st ≡ ‖∃ontray.⊤‖

Evaluating all features in Φ is efficient, with time linear in the number of state
atoms and number of distinct feature values linear in the number of objects.
Transitive closure, part of our complete grammar, generally has the highest
runtime complexity, cubic in the number of objects in a problem. The features
ca and cr have the largest syntactic complexity of seven, e.g., ca contains two
atomic concepts, one atomic goal concept, one concept negation, two concept
intersections, and one numerical composition.

18

3.1. Example Policy Sketch

3.1.3 Sketch Rules
The policy sketch for the Childsnack domain encodes an ordering of subgoals
to prioritize gluten-free ingredients for gluten-allergic children, effectively
managing resource constraints and avoiding unsolvable states. It consists of
two triplets of rules, {𝑟1, 𝑟2, 𝑟3} and {𝑟4, 𝑟5, 𝑟6}, which enforce this prioriti-
zation by serving gluten-free sandwiches to gluten-allergic children before
addressing non-allergic children. The first triplet defines subgoals for serving
gluten-allergic children (ca > 0). In contrast, the second triplet defines sub-
goals for serving non-gluten-allergic children after all gluten-allergic children
are served (ca = 0). The policy sketch 𝑅C

Φ over features Φ is defined as follows:

𝑟1 = {ca > 0, ¬sk
a, ¬st

a} ↦→ {sk
a, sk}

𝑟2 = {ca > 0, sk
a, ¬st

a} ↦→ {sk
a? , sk? , st

a, st}
𝑟3 = {ca > 0, st

a} ↦→ {ca↓, st
a? , st? }

𝑟4 = {ca = 0, cr > 0, ¬sk , ¬st} ↦→ {sk}
𝑟5 = {ca = 0, cr > 0, sk , ¬st} ↦→ {sk

a? , sk? , st
a? , st}

𝑟6 = {ca = 0, cr > 0, st} ↦→ {cr↓, st
a? , st? }

The first triplet of rules splits the problem of serving a sandwich to gluten-
allergic children into subproblems. When such a child exists, the respective
feature condition in all rules of the first triplet is satisfied (ca > 0), and the
respective feature condition in all rules of the second triplet is unsatisfied
(ca = 0). Rule 𝑟1 says that if there is no gluten-free sandwich in the kitchen
(¬sk

a) or tray (¬st
a), make such a sandwich (sk

a). Rule 𝑟2 says that if there is
such a sandwich in the kitchen (sk

a) but not on a tray (¬st
a), put it from the

kitchen on a tray (st
a). Rule 𝑟3 says that if there is such a sandwich on a tray

(st
a), serve a gluten-allergic child (ca↓). Notice that some of these rules have

additional side effects on other features and that achieving a subgoal might
require several steps. Suppose all gluten-allergic children were served or there
are none (ca = 0). In that case, the second triplet of rules splits the problem
of serving a sandwich to non-gluten-allergic children similarly but uses less
constrained features that do not require the sandwiches to be gluten-free.

In summary, the sketch successfully imposes an ordering on the subgoals, pre-
venting it from leading to unsolvable states. Each triplet of rules decomposes a
subproblem of serving a sandwich into making the sandwich, moving it on a
tray, and serving sandwiches while abstracting details like the specific tray and
places, effectively reducing the width of the subproblems for serving a sand-
wich to 1. Furthermore, the sketch exhibits acyclic behavior when executed
with SIWR. The following proposition summarizes its theoretical properties.

19

3. Expressing the Subgoal Structure

Proposition 2. The handcrafted sketch 𝑅C
Φ for the Childsnack domain is acyclic

and has width 1.

3.2 Experiments
We ran experiments to analyze the computational value of policy sketches
on a set of classical planning benchmarks from the International Planning
Competition (IPC). We implemented SIWR in the LAPKT planning system
(Ramirez et al. 2015). We compare our approach against the state-of-the-art
domain-independent heuristic search planners LAMA (Richter and Westphal
2010) and Dual-BFWS (Lipovetzky and Geffner 2017), as well as standard
goal serialization SIW (Lipovetzky and Geffner 2012). For each problem, we
imposed a time limit of 30 minutes and a memory limit of 3 GiB.

Table 3.1 highlights the key results of our experiments. We report the total
number of solved problems (S) and, for commonly solved problems, the maxi-
mum runtime in seconds (T), along with the average (A) and the maximum
(M) effective width across all encountered subproblems.

Depending on the domain, SIWR performed significantly better in terms of
either the number of solved problems, maximum runtime, or both. SIW fails
on all domains, indicating that goal serialization is often insufficient. LAMA
and Dual-BFWS solve only very few problems in Childsnack and Floortile
and require significantly more time in other domains such as Barman with
760 and 248 seconds, respectively, compared to SIWR that requires at most 3
seconds. The poor performance of Dual-BFWS results from subproblems that
are still too difficult. A more extensive analysis with similar conclusions is
available in Drexler, Seipp, and Geffner (2024). In summary, the experimental
results demonstrate the computational strength of acyclic policy sketches with
bounded width, confirming their advantages in performance and scalability.

3.3 Discussion
Through examples, we showed that policy sketches can capture the common
subgoal structure in several classical planning domains from the International
Planning Competition. Our sketches are acyclic, meaning that SIWR does not
trap into cycles, have bounded width, meaning that the complexity of subprob-
lems is polynomially upper bounded, are compact, meaning that they encode
the common subgoal structure with a small number of syntactical elements.
Related languages such as linear temporal logics (Bacchus and Kabanza 2000)
or reward machines (Icarte et al. 2022) do not aim at characterizing the

20

3.3. Discussion

LAMA BFWS SIW(2) SIWR(2)

Domain S T S T S A M S T A M

Barman (40) 40 760 40 248 0 – – 40 3 0.8 2
Childsnack (20) 6 3 9 172 0 – – 20 2 0.6 1
Driverlog (20) 20 39 20 3 7 1.5 2 20 4 0.4 1
Floortile (40) 9 202 6 865 0 – – 40 1 1.2 2
Grid (5) 5 3 5 3 2 2.0 2 5 2 0.8 2
Schedule (150) 150 38 150 103 78 1.1 2 150 13 0.0 0
TPP (30) 30 12 30 1234 21 2.0 2 30 8 0.2 1

Table 3.1: Comparison of the search algorithms LAMA, Dual-BFWS (BFWS),
SIW(2), and SIWR(2) on several planning domains, showing the number
of solved problems (S) and, for commonly solved problems, the maximum
runtime (T) in seconds, along with the average (A) and maximum (M) effective
width across all encountered subproblems. We use boldface to denote the
highest number of solved problems.

polynomial complexity of subproblems. However, this property yields practi-
cal advantages, as validated by experiments showing that SIWR outperforms
state-of-the-art methods in challenging benchmark domains.

The main limitation of the policy sketches language, in its current form, is its
limited ability to address the problem of reuse. Reuse is central to improving
efficiency by leveraging structural similarities across different problem classes.
Humans rarely solve problems entirely from scratch but instead restructure
previously acquired knowledge while integrating newly acquired knowledge
(Ellis et al. 2020; Dumancic et al. 2021).

To illustrate our concern, consider classes of problems such as doing the laundry,
cleaning the floor, watering the plants, washing the dishes, or preparing meals.
It is easy to see that general plans in all these classes involve getting hold
of different kinds of objects. Notice that features embedded directly into the
sketch rules specify the objects to be held based on their characteristics. Hence,
the language of policy sketches is insufficient in the broader scope of artificial
intelligence, where a central objective is to build agents capable of learning
and representing general plans for numerous problem classes (LeCun 2022).

We addressed this limitation in a follow-up work (Bonet, Drexler, et al. 2024),
where we wrapped policy sketches into so-called modules. Modules are es-
sentially parameterized policy sketches that take as input concepts or roles.
Modules allow for the injection of additional context that may depend on
the problem class. A module for getting hold of objects in different classes
might take a concept that specifies the object based on class-dependent char-

21

3. Expressing the Subgoal Structure

acteristics as input. The sketch might consist of two rules: one for moving
to the location of the object and another one for picking it up. Modules can
also call other modules, allowing for the composition of primitive into more
complex behaviors. The injection of the concepts and roles via arguments
allows modules to work for different problem classes.

The manual creation of policy sketches is time-intensive and domain-specific,
limiting scalability and applicability. The next chapter presents an unsupervised
method for learning policy sketches. While the problem of reuse is important,
we have looked into it exclusively from the representational aspect. In the
following, we return to the original form of the language, leaving extensions
of our methods for future work.

22

4 Learning Policy
Sketches

Core Publication of this Chapter

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2024). “Ex-
pressing and Exploiting Subgoal Structure in Classical Planning Using
Sketches”. In: Journal of Artificial Intelligence Research 80, pp. 171–208.

Manual creation of policy sketches is time-intensive and domain-specific, lim-
iting scalability and applicability. This chapter addresses these challenges by
introducing an unsupervised method for learning policy sketches that decom-
poses planning problems into subproblems of polynomial complexity. Our
method generalizes the method for learning general policies (Francès, Bonet,
et al. 2021) by incorporating planning width that measures the polynomial
complexity of a problem (Lipovetzky and Geffner 2012). We also employ
combinatorial optimization and optimize for the syntactically simplest solution,
i.e., policy sketch, increasing the likelihood of generalization to the target class
of problems. The method for learning general policies relied on manually
selected training problems, requiring significant human interaction and do-
main knowledge. Therefore, we incorporate curriculum learning (Bengio et al.
2009), tailored explicitly for learning from small problems, measured by the
number of states. Our curriculum learning approach iteratively exposes the

23

4. Learning Policy Sketches

learning procedure to a set of problem with a growing number of states only
upon validation failures. Our approach simplifies applying learning approaches
to unseen domains by incrementally exposing them to more data.

This chapter is organized as follows. First, we describe our learning method,
which consists of three main steps. Second, we show the results of learning
policy sketches of bounded width for several tractable classical planning do-
mains from the International Planning Competition. Our evaluation includes
an analysis of the learned sketch for the Childsnack and a comparison against
the previously handcrafted sketch from Chapter 3. Last, we conclude and
discuss the limitations of our method, recent advances in learning sketches
with deep learning, and promising directions for future research.

4.1 Method
Our method is closely related to the method of learning general policies. It
simultaneously learns the features Φ and policy sketch 𝑅 over the features
Φ on a training set and an automatically generated pool of features using
combinatorial optimization. We start by describing our curriculum learning
approach to generate training sets of problems. Next, we describe how to
automatically derive a pool of features from a training set. Last, we describe
the combinatorial encoding for learning a sketch from a training set and its
corresponding pool of features using answer set programming.

4.1.1 Data Generation
We sample a finite training set 𝒬𝒯 ⊆ 𝒬 using a problem generator. Directly
learning a sketch from 𝒬𝒯 is infeasible due to the large number of states it may
contain. To address this limitation, we use a curriculum learning approach that
iteratively trains on a subset of problems 𝒫 ⊆ 𝒬𝒯 , initially empty. If a learned
policy sketch fails to generalize, the procedure identifies an increasingly more
complex training set from 𝒬𝒯 . The procedure adds the problem with the
fewest states where the sketch fails to set a bound on the sketch width or the
sketch is not acyclic, and it may discard all problems first if this problem is
larger than any of the problems in the training set.

Our curriculum learning approach is particularly advantageous, as it incre-
mentally exposes the learning process to more complex problems. Ideally,
the process converges before 𝒫 grows to the size of 𝒬𝒯 , effectively reducing
computational costs by considering small amounts of data.

24

4.1. Method

4.1.2 Feature Construction
From a training set 𝒫, we derive a pool of features ℱ using the description
logic grammar-based approach from the work on learning general policies.

The method takes as input an additional integer value that limits the syntactical
complexity of the generated sentences. The lowest complexity sentences are
primitive concepts and roles, representing the domain’s unary and binary
predicates or the universal concept, each with complexity one. Then, the
procedure iteratively applies composite grammar constructors, such as concept
intersection or existential abstraction, whose sentence complexity is the sum
of the involved sub-sentences plus one. The procedure also composes Boolean
and numerical features, each adding a complexity of one to the sub-sentence.

The procedure prunes features that do not add information, i.e., whose de-
notation is precisely the same on all states as a previously generated feature.
The resulting Boolean and numerical features become members of the feature
pool ℱ . The number of features grows exponentially in the limit imposed
on the syntactic complexity. The number of features directly influences the
size of our combinatorial encoding as it considers all features from the pool.
Therefore, we are limited in the magnitude that we can set for the limit on the
syntactical complexity. The curriculum learning approach also helps mitigate
the combinatorial explosion, as problems with fewer objects result in numerical
features with fewer possible valuations.

4.1.3 Answer Set Program
Our method learns acyclic sketches of bounded width using combinatorial
optimization formulated as an answer set program (ASP) (Gelfond and Lifschitz
1988; Gebser et al. 2012). From the training set 𝒫, the feature pool ℱ , and a
bound 𝑘 on the sketch width, we generate an answer set program that includes
constraints to ensure that a solution, i.e., policy sketch 𝑅, for 𝒫 is acyclic and
has width bounded by 𝑘. We optimize for the syntactically simplest solution by
minimizing the sum of syntactic feature complexities over the selected features
in Φ. We refer the reader to the chapter’s main contribution for complete
encoding details.

Our encoding is sound and complete in the sense that it has a solution, i.e.,
answer set, if and only if there exists an acyclic policy sketch over a subset
of features from ℱ that has width bounded by 𝑘 on the training set 𝒫. The
resulting policy sketch can be read directly from an answer set of the program.

25

4. Learning Policy Sketches

4.2 Experiments
We ran experiments to learn sketches for several tractable classical planning
domains from the International Planning Competition (IPC). We generated a
set of small training problems using PDDL generators (Seipp et al. 2022) and
imposed a limit on the syntactic feature complexity of eight.

Table 4.1 shows the key results of learning sketches with width 𝑘 upper
bounded by 0, 1 and 2. For each width, we report the peak memory usage in
GiB (M), the total wall-clock time in hours for solving the answer set program
in parallel on 32 CPU cores (T), the number of states in the last iteration of the
curriculum learning procedure (#S), the number of selected features (#Φ),
and the number of learned sketch rules (#R).

The number of selected features and rules is always small, with at most 4,
respectively 5, in Childsnack. As 𝑘 increases, less complex features and sketches
are needed, but the search becomes more costly, albeit still polynomial. For 𝑘

equal to 0, we observe failures to learn a sketch in Childsnack, Delivery, and
Miconic for different reasons. In Childsnack, we suspect that the expressivity
of the feature language is insufficient. Same for Delivery, where we know
that a distance feature of complexity 15 is necessary (Francès, Bonet, et al.
2021). In Miconic, we ran out of resources but succeeded in subsequent works
(Drexler, Seipp, and Geffner 2023; Drexler, Ståhlberg, et al. 2024b). We
solve all domains for 𝑘 equal to 1, indicating a good balance between the
feature expressivity and resources needed for learning a sketch. We empirically
verified the correctness of our learned sketches on larger problems and formally
showed the correctness of a subset of them.

We can also observe a large required time of 63.34 hours and memory of 122
GiB in Childsnack. This demonstrates a clear limitation of our approach when
dealing with more complex domains, where memory and time consumption
can become prohibitive. Complex domains often require many states that may
induce large feature pools and, thus, even larger combinatorial encodings that
are difficult to solve. We also tried domains such as Barman and Grid, where
the number of required states was too large.

These results demonstrate the scalability limitations and a key strength of our
approach, i.e., its ability to learn from small amounts of input data. As domain
complexity increases, the memory and time requirements grow significantly
in the number of states, the size of the feature pool, and the bound imposed
on the sketch width. Reducing the size of the state space or the feature pool
is crucial for improving scalability. In Chapter 6, we will present a method to
reduce redundancy in the training data by removing symmetric states, which
can result in exponentially smaller training data sets.

26

4.3. Analysis

𝑘 = 0 𝑘 = 1 𝑘 = 2

Domain M T #S #Φ #R M T #S #Φ #R M T #S #Φ #R

Blocks-clear 1 0.01 22 2 2 1 0.01 22 1 1 1 0.01 22 1 1
Blocks-on 26 3.89 22 3 3 9 0.03 22 2 2 13 0.05 22 1 1
Childsnack – – – – – 122 63.34 792 4 5 – – – – –
Delivery – – – – – 17 0.15 96 2 2 3 0.01 20 1 1
Gripper 2 0.01 28 2 3 3 0.02 28 2 2 7 0.02 28 1 1
Miconic – – – – – 1 0.01 32 2 2 2 0.01 32 1 1
Reward 3 0.02 26 2 2 1 0.01 12 1 1 10 0.03 48 1 1
Spanner 12 0.56 227 2 2 3 0.01 74 1 1 6 0.01 74 1 1
Visitall 3 0.02 36 2 2 1 0.01 3 1 1 1 0.01 3 1 1

Table 4.1: Comparison of learning sketches for a class of problems 𝒬 with
width 𝑘 upper bounded by 0, 1 and 2, showing the peak memory in GiB (M),
the total wall-clock time in hours for solving the ASP on 32 CPU cores (T), the
total number of states in the last iteration of the curriculum learning procedure
(#S), the number of selected features (#Φ), and the number of sketch rules
(#R). We denote failures by “–” and report the reasons in the text.

4.3 Analysis
To illustrate the power of our method, we now present the learned sketch of
width 1 for the Childsnack domain while comparing it with the previously hand-
crafted sketch from Chapter 3. Our automated method simplifies the sketch
by minimizing the sum of syntactic feature complexities and fully exploiting
the structure of the training problems while maintaining generalization. The
learned features Φ = {ca, c, sa, sk} are:

ca ≡ |allergic-gluten ⊓ served𝑔 ⊓ ¬served|
c ≡ |served|

sa ≡ |no-gluten-sandwich|
sk ≡ |at-kitchen-sandwich|

The feature ca is identical to its counterpart in the handcrafted sketch, while c
merges cr and ca into a simpler representation by counting served children.
Similarly, sa abstracts the location of gluten-free sandwiches more simply
than sk

a, which specifically tracks their presence in the kitchen. The feature
sk is now a numerical feature, unlike the Boolean feature in the handcrafted
sketch, and the exclusion of features tracking sandwiches on trays indicates
that the learned sketch leverages the domain’s structural constraints, where
sandwiches can only leave the kitchen by being placed on trays. The learned
sketch demonstrates increased simplicity and efficiency with a total syntactic
complexity of 13, compared to 30 for the handcrafted sketch. The learned
sketch rules 𝑅Φ over the features Φ are:

27

4. Learning Policy Sketches

𝑟1 = {} ↦→ {sk? , ca? , sa↑, c? }
𝑟2 = {} ↦→ {sk↓, ca? , sa? , c? }
𝑟3 = {} ↦→ {sk? , ca↓, sa? , c? }
𝑟4 = {ca = 0} ↦→ {sk↑, ca? , sa? , c? }
𝑟5 = {ca = 0} ↦→ {sk? , ca? , sa? , c↑}

For example, the rule 𝑟1 says that making a gluten-free sandwich is good, and
the rule 𝑟2 says that decreasing the number of sandwiches in the kitchen is
good, effectively moving it on a tray. Notice that 𝑟2 now works for both types
of sandwiches because it can never result in an unsolvable state. Importantly,
none of the rules explicitly track whether sandwiches are placed on a tray,
exploiting the domain structure since decreasing the number of sandwiches in
the kitchen is only possible by moving them on a tray.

The learned sketch is acyclic and has a width of 1, matching the theoretical
result from the handcrafted sketch in Proposition 2.

Proposition 3. The learned sketch 𝑅C
Φ for the Childsnack domain is acyclic and

has width 1.

The analysis shows that our automated approach simplifies the handcrafted
sketch by minimizing the sum of syntactic complexities while showing in-
creased exploitation of the structure of the training problems.

4.4 Discussion
We introduced a method that automatically learns acyclic policy sketches of
bounded width. It simultaneously learns state abstractions as Boolean and
numerical features and temporal abstractions as sketch rules over the features
in one shot. Our method is sound and complete for the training set and we
can often show generalization towards the target class by hand. To the best
of our knowledge, no other method learns to split problems into subproblems
with polynomial complexity that is controllable with a single integer parameter,
a step towards building reliable agents that learn subgoal structures to plan
efficiently.

Our experimental evaluation shows that scalability is a primary concern of our
method, preventing its application in complex real-world problems, including
the household robot example. The main issue is the fast growth of the combi-
natorial encoding, which is polynomial in the number of states and the size of
the feature pool and exponential in the bound imposed on the sketch width.

28

4.4. Discussion

A promising direction for addressing the scalability issue is reuse. In this
context, reuse means learning a policy sketch from previously acquired knowl-
edge. We touched upon reuse in the previous chapter. We discussed so-called
modules that are good candidates for reuse. Modules use the language of
policy sketches and take additional concepts or roles as arguments to support
reuse across different problem classes.

Instead of learning modules, one could also learn sketches from a pool of
candidate sketch rules. That is, by first generating a pool of candidate sketch
rules independently optimized for simplicity, followed by learning a sketch from
the pool. This method effectively decouples the learning of state abstractions
in step one from learning temporal abstractions in step two. Decoupling the
learning of state and temporal abstractions allows for targeted optimizations,
potentially reducing computational costs and improving scalability.

Recently, Aichmüller and Geffner (2024) showed that policy sketches can be
learned with deep learning, a much more scalable framework. Their method
uses graph neural networks (GNN) (Scarselli et al. 2009) that were first used
for learning general policies (Ståhlberg, Bonet, et al. 2022a; Ståhlberg, Bonet,
et al. 2022b; Ståhlberg, Bonet, et al. 2023). GNNs take arbitrary-sized graph
structures that encode states as input. The features are implicit in the network
weights, and the network predicts the subgoal states.

The expressivity of these GNNs is upper bounded by 2-variable first-order logic
with counting quantifiers C2 (Grohe 2021) and often sufficient for our training
sets (Drexler, Ståhlberg, et al. 2024b). GNNs have a crisp characterization
of expressivity compared to our feature pools, whose limit on the syntactic
complexity complicates a precise characterization. Testing the correctness of
GNNs on larger problems approximates generalization towards the target class
of problems. However, GNNs lack interpretability, i.e., formally proving their
correctness is challenging or impossible, which imposes risks in reliability and
safety. An interesting and particularly challenging question for future work is
how to tightly integrate the scalability of deep learning and the interpretability
of simple target languages such as policy sketches.

Our contribution of learning policy sketches to split problems into subproblems
of polynomial complexity controllable by a single integer parameter allows for
an additional contribution. Learning hierarchical policies is a long-standing
challenge in artificial intelligence that aims to find hierarchical decompositions
of action plans without any prior structural information. Hierarchical policies
are a representation of how humans tackle many complex real-world problems.
The ability of policy sketches to control abstraction levels makes them a natural
foundation for hierarchical policies. The following chapter presents a method
for learning hierarchical policies based on our method for learning sketches.

29

5 Learning Hierarchical
Policies

Core Publication of this Chapter

• Dominik Drexler, Jendrik Seipp, and Hector Geffner (2023). “Learning
Hierarchical Policies by Iteratively Reducing the Width of Sketch Rules”.
In: Proceedings of the Twentieth International Conference on Principles
of Knowledge Representation and Reasoning (KR 2023). Ed. by Pierre
Marquis, Tran Cao Son, and Gabriele Kern-Isberner. IJCAI Organization,
pp. 208–218.

Hierarchical policies are key to how humans and many animals efficiently solve
complex, real-world problems. These agents prioritize higher-level planning
before working out the details of a low-level action plan (LeCun 2022). The
following example illustrates a multi-level plan for doing the laundry.

Example 8. Figure 5.1 shows a multi-level plan for doing the laundry. The
highest-level plan consists of only two steps: placing all laundry pieces into the
washing machine and launching the appropriate program. This plan involves
putting individual pieces into the machine at a lower level, one at a time. A
further breakdown might involve moving toward a laundry piece, picking it
up, approaching the machine, and placing it inside. Notice that the multi-level
plan applies to a large variety of households.

31

5. Learning Hierarchical Policies

place all pieces into machine 𝑚 launch program

place piece 𝑝1 into 𝑚
. . .

place piece 𝑝𝑛 into 𝑚

move to 𝑝1 pick 𝑝1 move to 𝑚 drop 𝑝1 into 𝑚

Figure 5.1: The illustration shows a multi-level plan for doing the laundry.
The circle nodes represent states, and the double-circled node represents a
goal state. The highest-level plan is at the top. The dotted lines indicate the
respective decompositions into lower-level plans.

Humans excel at identifying appropriate levels of abstraction to enable effi-
cient planning. However, automating this process for computational agents
remains an important challenge (LeCun 2022). Despite decades of research in
hierarchical planning, whether in model-based approaches (Sacerdoti 1974;
Tate 1977; Erol et al. 1994) or model-free reinforcement learning (Parr and
Russell 1997; Dietterich 2000; Barto and Mahadevan 2003), the problem
of learning hierarchical plan representations without supervision remains an
open challenge. A central issue is the absence of precise characterizations
for describing and uncovering effective hierarchical structures. Researchers
have explored strategies such as identifying “bottleneck states” (McGovern and
Barto 2001), precondition relaxation (Sacerdoti 1974), and analyzing causal
graphs (Knoblock 1994), but have restricted scopes, lacking either in learning
compact representations to enable interpretability, a precise characterization
of their effectiveness, or fully unsupervised methods for learning them.

For example, hierarchical policies expressed in hierarchical task networks
(HTNs) (Erol et al. 1994) decompose classes of problems into classes of sub-
problems. Primitive tasks at the lowest level represent primitive actions or
subproblems solvable in one step. Compound tasks at a higher level represent
compositions of tasks or subproblems solvable in several steps. However, there
is no characterization of what constitutes an effective decomposition.

Planning width is a well-suited to characterize an effective decomposition.
Subproblems induced by a primitive task are solvable in a single step and,
hence, have a width of one. Subproblems induced by compound tasks require
several steps and potentially have greater width. Bounded width ensures that
all subproblems have polynomial complexity, a crisp characterization, that can
help in unsupervised uncovering of effective hierarchical structures.

32

5.1. Characterization

In this chapter, we formalize this idea while using the policy sketches language
and our method for learning them. Our method systematically uncovers a
hierarchical structure by iteratively splitting classes of problems into subclasses
of problems whose polynomial complexity decreases, measured by the planning
width. Our method produces an interpretable hierarchical policy that is a
single-rooted tree where each node contains a sketch rule and represents a
class of problems. The width of classes of problems in the leaf nodes is zero
and increases as we move up in the tree.

This chapter is organized as follows. First, we characterize our hierarchical
policies and the validity property for effective hierarchical problem decomposi-
tion. We illustrate our characterization on a hierarchical policy for the class
of problems over the laundry domain, which we learned for the equivalent
Delivery domain (Bonet and Geffner 2021). Second, we present an empirical
evaluation of learning hierarchical policies. Last, we summarize and conclude.

5.1 Characterization
In this section, we present our formal characterization of hierarchical policies.
We illustrate our characterization using the class of problems 𝒬L over the
laundry domain. Recall that in each problem, there is a robot, laundry pieces,
and a washing machine that specifies the goal location. The objective is to
move all laundry pieces to the goal location. There are actions to pick up
and drop laundry pieces and move them between neighboring locations. A
hierarchical policy is syntactically defined as follows.

Definition 9. A hierarchical policy Π for a class of problems 𝒬 is a single-
rooted tree where every node 𝑛 has a sketch rule 𝑟(𝑛) over features Φ.

Example 9. Figure 5.2 illustrates a hierarchical policy for the class 𝒬L of
laundry problems, which consists of eight nodes. Each node is associated
with a rule defined over a subset of the following features: 𝐷 is true iff all
laundry pieces are delivered, 𝐻 is true if and only a laundry piece is being held,
𝑝 is the distance to the nearest undelivered laundry piece, 𝑡 is the distance
to the washing machine, and 𝑢 is the number of undelivered laundry pieces.
For example, rule 𝑟(𝑛0) over feature 𝐷 says that delivering all laundry pieces
is good (𝐷). Rule 𝑟(𝑛1) over feature 𝑢 says that decreasing the number of
undelivered laundry pieces is good (𝑢↓), rule 𝑟(𝑛2) over features 𝐻 and 𝑢 says
that getting hold of an undelivered laundry piece is good (𝐻) if not holding
one (¬𝐻), rule 𝑟(𝑛4) over features 𝐻 and 𝑝 says that decreasing the distance
to an undelivered laundry piece is good (𝑝↓) if not holding one (¬𝐻), and rule
𝑟(𝑛5) over features 𝐻 and 𝑝 says that picking up an undelivered laundry piece
is good (𝐻) if not holding one (¬𝐻) and it is at distance zero (𝑝 = 0).

33

5. Learning Hierarchical Policies

𝑛0:
{¬𝐷} ↦→ {𝐷}

𝑛1:
{𝑢 > 0} ↦→ {𝑢↓}

𝑛2:
{¬𝐻, 𝑢 > 0} ↦→ {𝐻}

𝑛3:
{𝐻, 𝑢 > 0} ↦→ {¬𝐻, 𝑢↓}

𝑛4:
{¬𝐻, 𝑝 > 0} ↦→ {𝑝↓}

𝑛5:
{¬𝐻, 𝑝 = 0} ↦→ {𝐻, 𝑝? }

𝑛6:
{𝐻, 𝑡 > 0} ↦→ {𝑡↓}

𝑛7:
{𝐻, 𝑡 = 0} ↦→ {¬𝐻}

Figure 5.2: The illustration shows a valid hierarchical policy ΠL
2 for class 𝒬L.

We are interested in hierarchical policies with a computational characterization
regarding polynomial time solvability of the class of problems 𝒬. Thus, we
place additional structural restrictions based on the notion of width depending
on three types of nodes: the root, inner, and leaf nodes. Each node captures a
class of problems. The single root node captures the target class of problems
that usually has unbounded width. Each inner node defines a problem decom-
position into classes of subproblems with a strictly smaller width. Each leaf
node captures a trivial class of subproblems with width zero, meaning that each
subproblem is solvable by executing a single action. Our decomposition aims
for an execution model that greedily picks child nodes to solve subproblems,
which requires a redefinition of sketch width that upper bounds the width
of each sketch rule independently from each other. Hierarchical policies that
satisfy these restrictions are called valid (Drexler, Seipp, and Geffner 2023).

Definition 10. A hierarchical policy Π for 𝒬 is valid if the rules 𝑟(𝑛) determine
classes 𝒬𝑛 of subproblems from 𝒬 that together obey the constraints:

1. Root node 𝑛: The rule 𝑟(𝑛) is {¬𝐷} ↦→ {𝐷} where 𝐷 is a dummy
Boolean feature that is true only in the goal of a problem 𝑃 in 𝒬, and
𝒬𝑛 = 𝒬.

2. Inner node 𝑛: The rules 𝑟(𝑛′) of the children 𝑛′ of 𝑛 encode an acyclic
sketch 𝑅(𝑛) for 𝒬𝑛 with a width that is smaller than the width of 𝒬𝑛.
The class of problems 𝒬𝑛′ at each child 𝑛′ with rule 𝑟(𝑛′) = 𝐶 ↦→ 𝐸 is
defined as 𝒬𝑛′ = {𝑃 [𝑠, 𝐺𝑟(𝑛′)(𝑠)] | 𝑃 [𝑠, 𝐺] ∈ 𝒬𝑛, 𝑠 (𝐶}.2

3. Leaf node 𝑛: The class of problems 𝒬𝑛 has width 0, meaning that each
problem 𝑃 in 𝒬𝑛 is solvable by executing a single action.

2We used that 𝒬 is closed to simplify the original definition and focus
on the core idea of including each problem 𝑃 [𝑠, 𝐺𝑟(𝑛′)(𝑠)] that results from
extending the goal states of problem 𝑃 [𝑠, 𝐺] with initial state 𝑠 that satisfies 𝐶.

34

5.1. Characterization

We write Π𝑘 to denote a valid hierarchical policy whose first decomposition
has sketch width 𝑘. The following example illustrates the notion of validity.

Example 10. The hierarchical policy ΠL
2 for the class 𝒬L of laundry problems

whose first decomposition has sketch width 2 shown in Figure 5.2 is valid
(Drexler, Seipp, and Geffner 2023):

• The root node 𝑛0 contains the sketch rule over the dummy Boolean
feature 𝐷 that holds only in the goal states of a problem from the class
𝒬0, which is equal to 𝒬.

• The node 𝑛1 encodes an acyclic sketch for 𝒬0 over the feature 𝑢 with
width 2. Node 𝑛1 represents the class of subproblems 𝒬1 with width 2
that aim to reduce the number of undelivered laundry pieces.

• The inner nodes 𝑛2 and 𝑛3 encode an acyclic sketch for 𝒬1 over the
features 𝑢 and 𝐻 with width 1. Node 𝑛2 represents the class 𝒬2 of
subproblems with width 1 that aim to get hold of an undelivered laundry
piece, while node 𝑛3 represents the class of subproblems 𝒬3 with width
1, that aim to deliver a laundry piece that is already being held.

• The leaf nodes 𝑛4 and 𝑛5 encode an acyclic sketch for 𝒬2 over the
features 𝐻 and 𝑝 with width 0. Node 𝑛4 represents the class of subprob-
lems 𝒬4 with width 0 that aim to move closer to an undelivered laundry
piece, while node 𝑛5 represents the class of subproblems 𝒬5 with width
0 that aim to pick a laundry piece up when its distance reaches zero.

We conclude the example by observing that the hierarchical policy ΠL
2 is also

meaningful because it is simple, i.e., has few syntactic elements and reflects a
hierarchical decomposition that a human might develop if given the task.

We define an execution model for valid hierarchical policies to compute a
plan for a given problem. In a nutshell, the execution model uses a stack to
track subproblems it currently solves. It traverses through the tree and makes
decisions based on the local neighborhood, executing actions only in the leaf
nodes. This execution model enables hierarchical policies to make decisions
efficiently by focusing on the local neighborhood, reducing the computational
overhead compared to flat general policies that evaluate all rules at each step.
These local decisions introduce a computational advantage when executing
hierarchical policies over flat general policies.

The following section builds on this formal characterization, presenting a
method for automatically learning valid hierarchical policies. It leverages
planning width and policy sketches to guide a refinement process that starts at
the root node, which consists of the dummy sketch rule.

35

5. Learning Hierarchical Policies

5.2 Method
Our method for learning a valid hierarchical policy Π𝑘 follows directly from
Definition 10: starting from the given target class of problem 𝒬, we find a set
of features that distinguishes goals from non-goals and instantiate the root
node with the rule as shown in Definition 10.1. Then, we iteratively refine
nodes whose class of problems has nonzero width by learning a policy sketch
whose width is one less, or 𝑘 in the particular case of the root node. For each
rule in the learned sketch, we instantiate a child node and compute the class
of subproblems as shown in Definition 10.2. Notice that the size of problems
in the class of subproblems in a child node can be smaller than the size of
problems in the class of the parent node, i.e., by pruning states only reachable
through goal states. The reduction in problem size translates into smaller
combinatorial encodings for learning sketches and, hence, computationally
more efficient learning compared to encodings based on problems from 𝒬.

5.3 Experiments
We implemented the method for learning hierarchical policies based on our
method for learning policy sketches from Chapter 4. We generated numerical
features until complexity 15, increasing the feature pool size.

Table 5.1 shows the key results of learning hierarchical policies Π𝑘 for a class
of problems 𝒬 for 𝑘 equal to 0, 1 and 2. We report the peak memory usage in
GiB (M), the total CPU time in hours for solving the answer set program in
parallel on 32 CPU cores (T), the highest number of states for the last iteration
of the curriculum learning procedure (#S), the number of selected features
(#Φ), and the maximum branching factor (#R).

Learning hierarchical policies failed in the Childsnack domain, where we
previously encountered issues in learning a sketch of width zero and where we
suspect that the expressivity of the feature language is insufficient. In Delivery,
we learned a sketch of width one after increasing the feature complexity to
15. Still, we failed to learn a general policy directly, i.e., a sketch of width
zero, demonstrating a computational gain of splitting classes of problems into
simpler classes of subproblems. In Blocks-on, we failed due to the increase
in the size of the feature pool. In Miconic, we also succeeded due to slightly
improved encoding. Learning a hierarchical policy Π𝑘 starting with a larger
𝑘 often requires fewer states and resources because subclasses of problems
contain smaller subproblems that represent a more specific problem aspect. We
successfully tested the learned hierarchical policies on much larger problems.
Our method was able to learn the hierarchical policy similar to ΠL

2 from

36

5.4. Discussion

Figure 5.2 for the equivalent Delivery domain. We also learned meaningful
hierarchical policies for several other planning domains, demonstrating that
the notion of width can effectively guide the discovery of effective hierarchical
structures.

Π0 Π1 Π2

Domain M T #S #Φ #R M T #S #Φ #R M T #S #Φ #R

Blocks-clear 2 0.26 22 2 2 1 0.04 5 3 2 2 0.10 5 2 2
Blocks-on – – – – – 53 20.60 22 3 4 38 15.16 20 4 2
Delivery – – – – – 12 39.18 48 4 2 8 10.42 28 4 2
Gripper 3 0.43 28 2 4 4 3.00 28 3 2 6 1.44 34 3 2
Miconic 14 12.48 36 3 4 4 0.40 18 3 2 6 0.31 18 4 2
Reward 3 0.47 14 2 2 1 0.13 8 2 2 3 0.84 12 2 2
Spanner 4 1.43 19 3 3 10 8.75 96 4 2 17 16.74 76 4 2
Visitall 11 10.22 22 2 2 3 1.69 9 2 2 5 4.15 11 2 2

Table 5.1: Comparison of learning hierarchical policies Π𝑘 for a class of
problems 𝒬 for 𝑘 equal to 0, 1 and 2, showing the peak memory in GiB (M),
the total CPU time in hours for solving the ASP on 32 CPU cores (T), the highest
number of states for the last iteration of the curriculum learning procedure
(#S), the number of selected features (#Φ), and the maximum branching
factor (#R). We denote failures by “–” and report the reasons in the text.

5.4 Discussion
We introduced a crisp characterization of hierarchical policies based on plan-
ning width and an unsupervised method for learning them. A hierarchical
policy is a single-rooted tree whose nodes consist of a single sketch rule. The
sketch rules in a valid hierarchical policy induce a decomposition of classes
of problems into classes of subproblems with smaller polynomial complexity.
More precisely, the sketch rules in the children of each node represent an
acyclic sketch whose width is smaller than the width of the class of problems
at the parent node. These rules split the class of problems into subclasses of
problems with smaller polynomial complexity. For every valid hierarchical
policy whose sketch has mutually exclusive feature conditions at each node, a
translation exists to a flat general policy, demonstrating a close connection in
their expressive power (Drexler, Seipp, and Geffner 2023).

The unsupervised method for learning hierarchical policies iteratively splits
classes of problems into classes of subproblems of smaller bounded width using
our method for learning policy sketches. Our experimental results show that
we can learn hierarchical decompositions with a few syntactical elements,
allowing us to often prove their correctness for the entire problem class.

37

5. Learning Hierarchical Policies

Hierarchical policies, similar to policy sketches, are also limited in their ability
for reuse, as previously discussed in Chapter 3. The features are embedded
directly into the rules, preventing the injection of context-dependent informa-
tion. Modules that call other modules, as briefly introduced in Chapter 3, are
an alternative language for defining hierarchical policies that allow reuse.

Our experimental evaluation shows that similar to learning policy sketches,
scalability is a primary concern of our method, preventing its application in
complex real-world problems, including the household robot scenarios. We
presented several ways to address scalability in Chapter 4. The method of
learning hierarchical policies has an advantage in terms of scalability over
learning general policies directly, i.e., sketches of width zero. Classes of sub-
problems in the children of a node can be smaller, as a result of pruning states
that are only reachable through the extended goal states, making learning of
successive policy sketches increasingly cheaper.

In the next chapter, we present a general class of abstractions based on symme-
try reduction to address scalability issues to some extent. These abstractions
map symmetric states to the same abstract state. The number of abstract
states can be exponentially smaller, effectively reducing the size of several
combinatorial encodings in generalized classical planning, including ours.

38

6 Abstractions

Core Publication of this Chapter

• Dominik Drexler, Simon Ståhlberg, Blai Bonet, and Hector Geffner
(2024b). “Symmetries and Expressive Requirements for Learning Gen-
eral Policies”. In: Proceedings of the Twenty-First International Conference
on Principles of Knowledge Representation and Reasoning (KR 2024). IJ-
CAI Organization.

A major challenge in classical planning is managing the explosion of generated
states during the search. Symmetry detection helps to reduce the number
of generated states by identifying structurally equivalent states that can be
pruned, significantly improving search performance in problems with many
structural symmetries (Fox and Long 1999).

Symmetry detection methods typically use graph encodings of the problem
that combine information about the state, goal, and actions (Pochter et al.
2011; Sievers et al. 2019). The automorphism group of the graph captures
all its symmetries by representing the set of all automorphism of the graph,
which are structure-preserving mappings from the graph onto itself. These
automorphisms translate into structural symmetries within the state space of
a problem. Computing the automorphism group of a graph is harder than

39

6. Abstractions

solving the graph isomorphism problem, for which no known polynomial time
algorithm exists (Babai 2016).

Research on symmetry detection in classical planning has focused on detecting
symmetries derived from grounded problem representations (Pochter et al.
2011) and lifted problem representations (Fox and Long 1999; Sievers et al.
2019). The lifted representation contains first-order information, including
predicates, objects, and action schemas, while the grounded representation
abstracts first-order details and focuses on propositional facts and ground ac-
tions. Methods on the ground representation may result in a heavier symmetry
reduction of the generated states (Sievers et al. 2019).

In generalized classical planning, where an objective is to learn general plans
for infinite classes of problems, symmetry detection plays an additional role:
general plans that solve a state can also solve any symmetric state under
specific conditions. These conditions depend on the representation language
that is used to represent general plans and the symmetry detection method.
Symmetry reduction in generalized planning can reduce the amount of re-
dundant information in the training data, enabling more efficient learning.
The computational hardness of computing the automorphism group is less of
a concern as the training sets usually contain small problems. Example 6.1
illustrates symmetry pruning on a small problem from the laundry domain.

Example 11. Figure 6.1 shows the fully expanded initial state 𝑠0 of a problem
from the laundry domain. In both, the lifted and grounded problem represen-
tation, one can identify that the two laundry pieces are symmetrical. In the
lifted problem representation, an automorphism explicitly maps these objects
onto each other. In the grounded problem representation, it is implicit in the
mapping of grounded propositions onto each other. In both cases, a forward
search must only expand either successor 𝑠2 or 𝑠3, effectively pruning a large
portion of the state space.

40

𝑙 𝑟

𝑠0

𝑎

𝑝1 𝑝2

𝑙 𝑟

𝑠0

𝑎

𝑝1 𝑝2

𝑙 𝑟

𝑠2

𝑎

𝑝1

𝑝2

𝑙 𝑟

𝑠3

𝑎

𝑝1

𝑝2

move
(𝑎,

𝑙,
𝑟)

pick(𝑎, 𝑙, 𝑝1)

pick(𝑎, 𝑙, 𝑝2)

Figure 6.1: The illustration shows the fully expanded initial state 𝑠0 of a
laundry problem that contains a robot 𝑎, two laundry pieces 𝑝1 and 𝑝2, and
two locations 𝑙 and 𝑟. In 𝑠0, both laundry pieces are at location 𝑙 with goal
location 𝑟, and the robot 𝑎 is at location 𝑙. The laundry pieces are symmetric;
hence, the states 𝑠2 and 𝑠3 are symmetric, denoted by a dotted rectangle.

In this chapter, we apply symmetry detection to generalized classical planning.
We define two states as symmetric if their relational structures are isomorphic.
Relational structures are simply an alternative view of states. Isomorphisms
between relational structures are functions that rename the object identities
but preserve their relationships. We find isomorphisms by encoding states
as graphs and running state-of-the-art graph isomorphism solvers. A central
contribution of our approach is the exploitation of a well-known result that two
isomorphic relational structures satisfy the same first-order logic sentences,
allowing us to ignore lifted action schemas completely. Consequently, we
bypass the complexity of considering the actions in the graph encodings.
Hence, our graph encodings depend purely on the atoms in a state, resulting
in smaller graph encodings. Using our method, we can generate abstractions
of the state spaces. Experimental results show a reduction in training data
size by more than two orders of magnitude across several domains, along with
improvements in learning general policies from these abstractions compared
to the state spaces as done previously (Francès, Bonet, et al. 2021).

41

6. Abstractions

6.1 Theoretical Framework
Planning states are relational structures. A finite relational structure consists of
a finite set of objects (the universe) and the predicate symbols of the planning
domain (the signature). The interpretation captures the relationships between
the objects in the state. We define two planning states as equivalent if and
only if their corresponding relational structures are isomorphic. Intuitively
speaking, two equivalent states only differ in the naming of the objects, not
the relationships between the objects. We cast the problem of finding an iso-
morphism between relational structures as graph isomorphism on undirected
vertex-colored graphs. Although graph isomorphism is not known to be solv-
able in polynomial time, the best-known algorithm runs in quasi-polynomial
time (Babai 2016). This section is organized as follows. First, we describe the
graph encoding used for detecting equivalent states. Second, we describe how
to obtain abstractions for generalized planning based on state equivalence.
Last, we lift the notion of solvability for general policies in the context of our
abstractions by introducing a structural restriction called uniformity.

6.1.1 Graph Encoding
Our graph encoding builds on top of existing graph encodings (Ståhlberg,
Bonet, et al. 2022a; Chen, Trevizan, et al. 2024; Chen, Thiébaux, et al. 2024;
Horcík and Sír 2024). Those graph encodings aim not to test state equivalence
but to use graph neural networks. Each of the existing encodings has one of the
following two limitations, preventing them from being used for our purpose of
state equivalence testing: 1) there is a loss of information, in the sense that
the state cannot be decoded from the graph, or 2) the graph encodings are not
undirected vertex-colored graphs, which modern graph isomorphism libraries
such as nauty (McKay and Piperno 2014) requires as input.

Our graph encoding addresses these limitations. For a given planning state, our
undirected vertex-colored graph has an object vertex for each object in the state
and a positional argument vertex for each occurrence of an object in a ground
atom that is true in the state. Object vertices share the same unique color,
allowing them to be mapped onto one another. Positional argument vertices
have a unique color, given by the predicate and the position, to ensure that only
semantically matching vertices are mapped onto one another. Edges connect
object vertices to their respective positional argument vertices and neighboring
positional argument vertices. Our encoding works for predicates of arbitrary
arity and guarantees that two relational structures are isomorphic if and only
if their object graphs are isomorphic. We say that two states are equivalent
if and only if their corresponding relational structures are isomorphic. The
equivalences ensure that there is no loss of information.

42

6.1. Theoretical Framework

Example 12. Figure 6.2 shows the graph of the state 𝑠2 or 𝑠3 from Figure 6.1,
depending on the labeling of the laundry pieces. It contains five object vertices,
one for every object in the state. The sub-graph consisting of the object vertex
⟨𝑙⟩, positional argument vertex ⟨loc, 1, ⟨𝑙⟩⟩, and their connecting edge uniquely
represent the unary ground atom loc(𝑙). For higher arity relations, the structure
above is generalized. The sub-graph consisting of the object vertices ⟨𝑎⟩ and
⟨𝑙⟩, the positional argument vertices ⟨at, 1, ⟨𝑎, 𝑙⟩⟩ and ⟨at, 2, ⟨𝑎, 𝑙⟩⟩, and their
connecting edges uniquely represent the binary atom at(𝑎, 𝑙). In other words,
the ordering of the arguments can be uniquely decoded from the colors that
depend on the position of the argument itself.

⟨𝑝1⟩

⟨𝑝2⟩

⟨piece, 1, ⟨𝑝1⟩⟩

⟨piece, 1, ⟨𝑝2⟩⟩

⟨𝑎⟩

⟨robot, 1, ⟨𝑎⟩⟩

⟨𝑟⟩ ⟨loc, 1, ⟨𝑟⟩⟩⟨𝑙⟩⟨loc, 1, ⟨𝑙⟩⟩

⟨carry, 1, ⟨𝑎, 𝑝1⟩⟩⟨carry, 2, ⟨𝑎, 𝑝1⟩⟩

⟨holding, 1, ⟨𝑎⟩⟩

⟨at, 1, ⟨𝑎, 𝑙⟩⟩ ⟨at, 2, ⟨𝑎, 𝑙⟩⟩

⟨at, 1, ⟨𝑝2, 𝑙⟩⟩⟨at, 2, ⟨𝑝2, 𝑙⟩⟩

⟨at𝑔 , 1, ⟨𝑝1, 𝑟⟩⟩

⟨at𝑔 , 2, ⟨𝑝1, 𝑟⟩⟩

⟨at𝑔 , 1, ⟨𝑝2, 𝑟⟩⟩

⟨at𝑔 , 2, ⟨𝑝2, 𝑟⟩⟩

⟨adj, 1, ⟨𝑟, 𝑙⟩⟩⟨adj, 2, ⟨𝑟, 𝑙⟩⟩

⟨adj, 2, ⟨𝑙, 𝑟⟩⟩⟨adj, 1, ⟨𝑙, 𝑟⟩⟩

Figure 6.2: The illustration shows the graph of the state 𝑠2 or 𝑠3 from Fig-
ure 6.1. The object vertices are uncolored. The positional argument vertices are
colored depending on their position and predicate. The static goal predicate
atg represents the goal location of the pieces, e.g., atg(𝑝1, 𝑟).

6.1.2 Equivalence-based Abstractions
Equivalence-based abstractions are abstractions of the state space induced by
a problem where two equivalent states are mapped to the same abstract state
and two transitions with equivalent sources, respectively, target states, are
mapped to the same abstract transition. A strength of our approach is that it is
easily applicable across different problems, detecting completely equivalent
problems or equivalent states across different problems. The following example
illustrates the theoretical gain, as the number of states in the abstraction can
be exponentially smaller.

43

6. Abstractions

Example 13. Figure 6.3 shows an abstraction for a laundry problem with 𝑛

laundry pieces and two locations 𝑙 and 𝑟. There are 4𝑛 + 2 = 2[(𝑛 + 1) + 𝑛]
non-isomorphic states: for each of the two possible positions of the robot,
there are 𝑛 + 1 states where no laundry piece is being held and 𝑛 states where
a laundry piece is being held. In comparison, the state space contains an
exponential amount of states, e.g., each laundry piece can be in either room
for a total of 2𝑛+1 states.

#L = 𝑛 ,

H = ⊥ ,

C = 𝑙

#L = 𝑛 ,

H = ⊥ ,

C = 𝑟

#L = 𝑛 − 1 ,

H = ⊤ ,

C = 𝑙

#L = 𝑛 − 1 ,

H = ⊤ ,

C = 𝑟

#L = 𝑛 − 1 ,

H = ⊥ ,

C = 𝑟

#L = 𝑛 − 1 ,

H = ⊥ ,

C = 𝑙

movemove movemove movemove

pick

drop

drop

pick

Figure 6.3: The illustration shows a fragment of the abstraction for a problem
from 𝒬L with 𝑛 laundry pieces and two locations 𝑙 and 𝑟. The number of
pieces at 𝑙 (#L), whether one is held (H), and the robot’s location (C) identifies
each equivalence class. The abstraction contains 4𝑛 + 2 states (see text).

While the solvability of general policies is typically defined on state spaces
(Francès, Bonet, et al. 2021), applying solvability to our abstractions requires
introducing the concept of uniformity of general policies.

6.1.3 Uniform General Policies
Uniformity imposes a structural restriction on general policies,3 requiring
that they cannot distinguish transitions between equivalent states. In other
words, uniform general policies treat structurally equivalent state transitions
similarly, ensuring consistency in decision-making across equivalent states.
The uniformity constraint allows the notion of solvability to be lifted from state
spaces to equivalence-based abstractions. In this context, a uniform general
policy is considered solvable if all maximal state trajectories for an equivalence
class lead to a goal state. This raises the question of whether previous notions
of general policies are uniform for our abstractions.

Formal languages that are isomorphism-invariant over finite relational struc-
tures cannot distinguish between isomorphic relational structures. Descriptive

3The restriction can be placed other types of general plans, e.g., sketches.

44

6.2. Experiments

languages are usually isomorphism-invariant by design. Description logics
(Baader et al. 2003), graph neural networks (Scarselli et al. 2009), and first-
order logic with counting quantifiers (Immerman 1998) are examples of iso-
morphism invariant languages. Hence, general policies defined over such
isomorphism-invariant feature languages are uniform over our abstractions.

Our work can be seen as a specific instantiation of the abstract structures
framework for lifted problem representations while ignoring action schemas
by Sievers et al. (2019). Their specific instantiation and work on the grounded
problem representation (Pochter et al. 2011) allowed two truly non-isomorphic
states to be considered equivalent. This can occur when an automorphism
maps two distinct predicates onto each other. As a result, general policies
based on isomorphism invariant languages, such as the ones mentioned above,
may distinguish states and transitions in abstractions based on these stronger
notions of symmetry, effectively breaking uniformity over such abstractions.

6.2 Experiments
We ran experiments to see the reduction in training data when using ab-
stractions and how they affect the efficiency of learning general policies. We
use the method for learning sketches from Chapter 4 to learn general poli-
cies, i.e., sketches of width zero. Since general policies are uniform for our
equivalence-based abstractions, it suffices to pick a single representative, ef-
fectively reducing the size of the combinatorial encoding. The training set
consists of planning domains from the International Planning Competition. We
sampled sets of small problems using PDDL generators (Seipp et al. 2022).

Table 6.1 shows the results for learning general policies with and without
equivalence-based reductions. We report the peak memory usage (M) in GiB,
the wall-clock time in seconds for learning (T), the total number of states in
the training set (#S) and the reduced training set (#S/∼𝑖𝑠𝑜), and ratios for the
speedup in time and the reduction in the number of states.

The table shows a drastic reduction in the number of states in the training set,
ranging from factor 1.18 in Visitall to 355.12 in Blocks4ops-clear. In principle,
this should result in a significant decrease in peak memory. However, we
are using the implementation for learning sketches, which requires the entire
state space to be held in memory because it uses the notion of width that
depends on the structure of the state space. We expect a decrease in more
specialized implementations. There is a slowdown in some simple domains,
such as Ferry or Blocks4ops-on, where the absolute time is still relatively small.
In Blocks3ops, the speedup of 2.57 is significant; after closer inspection, the
curriculum learning procedure selects the same problem but with fewer states.

45

6. Abstractions

In summary, equivalence-based abstraction can reduce the necessary training
data for learning general policies and improve learning efficiency.

x without reduction xx with reduction

Domain M T #S M T Speedup #S/∼𝑖𝑠𝑜 Factor

Blocks3ops 9 28,884 145,680 11 11,233 2.57 4,901 29.72
Blocks4ops-clear 1 8 30,540 1 6 1.33 86 355.12
Blocks4ops-on 3 265 30,540 2 228 0.47 249 122.65
Delivery 3 534 411,720 2 325 1.64 3,346 123.05
Ferry 1 69 8,430 1 91 0.76 265 31.81
Gripper 1 5 1,084 1 6 0.83 90 12.04
Miconic 1 38 32,400 1 58 0.66 12,339 2.63
Reward 1 20 13,394 1 14 1.43 7,026 1.91
Spanner 1 7 9,291 1 8 0.88 283 32.83
Visitall 2 77 476,766 3 95 0.98 402,880 1.18

Table 6.1: Comparison of learning general policies with equivalence-based
reductions and without, showing the memory usage in GiB (M), the wall-clock
time in seconds (T), the total number of states in the training set (#S) and
the reduced training set (#S/∼𝑖𝑠𝑜), and ratios for the speedup in time and the
reduction in the number of states. We use boldface to highlight the winner in
a pairwise comparison, i.e., the one that needed strictly fewer resources.

6.3 Discussion
We introduced a class of abstractions for generalized planning based on state
equivalence in terms of the existence of an isomorphism between their rela-
tional structures that can result in an exponential reduction of redundancy in
the training data. We introduced a structural restriction for general policies,
called uniformity, that allows the solvability of general policies to be lifted
from state spaces to our abstractions. General policies over isomorphism-
invariant feature language are naturally uniform over our abstractions because
isomorphism-invariant languages cannot distinguish between isomorphic rela-
tional structures (Immerman 1998). Our abstractions are applicable to and
other works in generalized classical planning that use description logics (e.g.,
Martín and Geffner 2004; Fern et al. 2004; Yoon et al. 2008; Francès, Corrêa,
et al. 2019; Francès, Bonet, et al. 2021; Ståhlberg, Francès, et al. 2021; Drexler,
Seipp, and Geffner 2022; Drexler, Seipp, and Geffner 2023), or graph neural
networks (e.g., Ståhlberg, Bonet, et al. 2022a; Aichmüller and Geffner 2024).

An interesting question for future work is whether or under which conditions
we can learn general policies for abstractions based on stronger notions of
symmetry. For example, we can prune statically irrelevant information from

46

6.3. Discussion

states before isomorphism testing, such as objects, ground atoms, or goal
atoms that are static and irrelevant in a state. While this does not improve
the symmetry reduction on a per-problem level, it increases the amount of
symmetry reduction among collections of problems. States with statically irrel-
evant information may exist if the state space contains more than one strongly
connected component. Dominance pruning (Torralba and Hoffmann 2015;
Torralba 2018) could increase the number of strongly connected components
by removing unnecessary state transitions from the state space.

47

7 Expressive Learning
Requirements

Core Publication of this Chapter

• Dominik Drexler, Simon Ståhlberg, Blai Bonet, and Hector Geffner
(2024b). “Symmetries and Expressive Requirements for Learning Gen-
eral Policies”. In: Proceedings of the Twenty-First International Conference
on Principles of Knowledge Representation and Reasoning (KR 2024). IJ-
CAI Organization.

In the previous chapter, we presented equivalence-based abstractions that
map equivalent states, i.e., whose relational structures are isomorphic, to
the same abstract state. Isomorphism-invariant languages cannot distinguish
between two equivalent states, which implies consistent decision-making
across equivalent state transitions or state pairs. Examples of isomorphism-
invariant languages are description logics (Baader et al. 2003), graph neural
networks (Scarselli et al. 2009), and first-order logic with counting quantifiers
(Immerman 1998). Therefore, the policy sketches language is isomorphism-
invariant if the feature language also is because policy sketches operate directly
on top of the feature valuations.

In this chapter, we take a different perspective on feature languages by identify-
ing sufficiently expressive languages to distinguish between all non-equivalent

49

7. Expressive Learning Requirements

states in planning benchmark sets. Ideally, its expressive power should be
neither excessive nor insufficient, as overly expressive power incurs high com-
putational costs during the learning and testing of general plans over such
languages. We restrict ourselves to using benchmark sets because testing
whether a language has sufficient expressive power for an infinite class of
problems 𝒬 is challenging, as it requires a logical characterization of 𝒬.

Before going into more detail, we give a positive answer: three-variable first-
order logic with counting quantifiers C3 suffices for all considered benchmark
sets. Moreover, its two-variable fragment C2 often suffices, showing that the
expressive power of a specific family of graph neural networks also suffices.

Our approach to obtaining these results is simple and effective. It uses two
important theoretical results from the literature:

R1 The 𝑘-dimensional Weisfeiler-Leman algorithm, also called 𝑘-WL, has
the same expressive power as 𝑘+1-variable first-order logic with count-
ing quantifiers C𝑘+1 (Cai et al. 1992).

R2 The family of aggregate-combine-readout graph neural networks, also
called ACR-GNNs, can capture any two-variable first-order logic with
counting quantifiers C2 formula (Barceló et al. 2020; Grohe 2021).4

Our method runs the 𝑘-WL algorithm (Weisfeiler and Leman 1968) to find
expressivity conflicts among all pairs of states in the benchmark set. Then,
we use the abovementioned results from the literature to deduce whether the
expressive power of other languages suffices.

The chapter is organized as follows: First, we describe our method. Second,
we present experimental results, using our method to exhaustively check for
expressivity conflicts in several planning benchmark sets from the International
Planning Competition. Last, we summarize our results while discussing related
work, present ideas for future research, and conclude.

7.1 Method
Building on our graph encoding of states (relational structures) from Chapter 6,
we develop a method to find languages whose expressive power is sufficient for
a benchmark set 𝒬𝒯 of planning problems. Recall that our encoding preserves
state information, ensuring that two graphs are isomorphic if and only if their
relational structures are isomorphic.

4ACR-GNNs are traditional graph neural networks where global aggregate
information is taken into account.

50

7.2. Experiments

The expressive power of a feature language ℒ captures its ability to distinguish
graphs, which, in our case, precisely encode states (Immerman 1998). For
example, in problems from the class 𝒬L over the laundry domain, the first-
order sentence 𝜑 ≡ ∃𝑥.holding(𝑥) distinguishes any state where the robot
holds a laundry piece from any state where it does not hold a piece. Fail-
ure to distinguish non-isomorphic states may disqualify the assignment of
different behaviors to those states. Hence, a feature language ℒ has sufficient
expressivity power if and only if it can distinguish between all pairs of non-
isomorphic states in problems from a class of problems 𝒬𝒯 , and we may say ℒ
has sufficient expressivity.

Our method analyzes the required expressive power relative to 𝑘-variable
first-order logic with counting quantifiers (C𝑘). More precisely, we are looking
for the smallest 𝑘 such that C𝑘 has sufficient expressivity. We use result R1
from the literature to use the 𝑘-WL algorithm for finding such a smallest 𝑘.

The 𝑘-WL algorithm (Weisfeiler and Leman 1968) is a graph coloring algorithm
for approximate graph isomorphism testing. It takes as input a graph and
computes a stable coloring. The algorithm runs in time polynomial in the graph
size if 𝑘 is fixed. If the stable colorings of two graphs are identical, then 𝑘-WL
cannot distinguish them. Moreover, if the two graphs are non-isomorphic, then
𝑘-WL falsely identifies them as isomorphic. Conflicts arise when 𝑘-WL falsely
identifies two non-isomorphic states as isomorphic, resulting in an expressivity
conflict or simply an E-conflict. Moreover, if both states share the same goal
distance 𝑉 *, they form a V-conflict. V-conflicts are less problematic for learning
optimal goal distances as they do not affect the accuracy of distance predictions.
However, E-conflicts are generally problematic for learning general plans, as
the algorithm treats different states that represent different problem aspects as
identical, potentially disqualifying the assignment of different behaviors, i.e.,
actions, to those states.

Hence, if 𝑘-WL does not find a conflict on any pair of non-equivalent states
in 𝒬𝒯 , then its expressivity suffices, and we can apply result R1 from the
literature to deduce that the expressivity of C𝑘+1 must also suffice. In the
special case of 𝑘 equal to 1, we can apply result R2 from the literature on top
to deduce that the expressivity of the family of ACR-GNN must also suffice.

7.2 Experiments
We ran experiments to find conflicts in benchmark sets of problems over plan-
ning domains from the International Planning Competition. The benchmark
sets contain small problems that we sampled using PDDL generators (Seipp
et al. 2022). We first computed the abstractions presented in Chapter 6 to par-

51

7. Expressive Learning Requirements

1-WL 2-FWL

Domain #𝒬 #S #S/∼𝑖𝑠𝑜 #E #V #E #V

Barman 510 115 M 38 M 1,326 537 0 0
Blocks3ops 600 146 K 133 K 50 20 0 0
Blocks4ops 600 122 K 110 K 54 27 0 0
Blocks4ops-clear 120 31 K 3 K 0 0 0 0
Blocks4ops-on 150 31 K 8 K 0 0 0 0
Childsnack 30 58 K 5 K 0 0 0 0
Delivery 540 412 K 62 K 0 0 0 0
Ferry 180 8 K 4 K 36 36 0 0
Grid 1,799 438 K 370 K 42 38 0 0
Gripper 5 1 K 90 0 0 0 0
Hiking 720 44 M 5 M 0 0 0 0
Logistics 720 69 K 38 K 131 131 0 0
Miconic 360 32 K 22 K 0 0 0 0
Reward 240 14 K 11 K 0 0 0 0
Rovers 514 39 M 34 M 0 0 0 0
Satellite 960 14 M 8 M 5,304 4,226 0 0
Spanner 270 9 K 4 K 0 0 0 0
Visitall 660 3 M 2 M 0 0 0 0

Table 7.1: Overview of the number of conflicts detected in our benchmark sets,
showing the number of problems used in our experiments (#𝒬), the number
of total states (#S), the number of equivalence classes where states of each
problem are partitioned individually (#S/∼𝑖𝑠𝑜), the number of expressivity
conflicts caused by 1-WL and 2-FWL (#E), and the number of E-conflicts where
states have the same optimal goal distance V* (#V).

tition the states into their equivalence classes. We ran color refinement (1-WL)
and the 2-dimensional (Folklore) Weisfeiler-Leman algorithm (2-FWL) to find
conflicts among pairs of representative states from each equivalence class in
each problem. We set a time limit of 6 hours per problem. We accumulated
the conflicts of successful runs with problems that contain at most 1M states.

Table 7.1 shows the total number of problems (#𝒬), the total number of states
in the state spaces (#S), the total number of state equivalence classes (#S/∼𝑖𝑠𝑜)
where the states of each problem are partitioned individually, and the number
of E-conflicts (#E) and V-conflicts (#V) caused by 1-WL and 2-FWL.

The number of states ranges from 1K in Gripper to 115M in Barman, showing
that our method can handle large benchmark sets. We can observe that the
1-WL algorithm finds no conflicts in 11 out of all 18 domains, and in the
remaining 7 domains, there are both types of conflicts. Most importantly, all

52

7.3. Discussion

conflicts disappear when using the more expressive 2-FWL algorithm. Using
the equivalences from the literature, we can summarize the main results:

1. 1-WL, C2, and ACR-GNNs have sufficient expressivity for 11 benchmark
sets, and

2. 2-FWL, and C3 have sufficient expressivity for all benchmark sets.

While these findings do not give strong guarantees for successfully learning
general plans, our findings often show empirical alignment with previous work
on learning general policies using graph neural networks (Ståhlberg, Bonet,
et al. 2023). For example, we do not find any 1-WL conflicts in domains
such as Delivery, Gripper, Miconic, and Visitall where Ståhlberg, Bonet, et
al. (2023) successfully learn a nearly perfect general policy. Moreover, we
find 1-WL conflicts in domains such as Logistics and Grid, where the same
approach of the same authors fails. However, we do not find conflicts in Rovers
where the same authors claim that it requires C3 expressivity because of the
importance of a ternary predicate, indicating that our benchmark set does not
cover all aspects of the domain (Ståhlberg, Bonet, et al. 2022a). In recent work
(Ståhlberg, Bonet, et al. 2025), the same authors show that more expressive
families of graph neural networks can successfully learn nearly perfect general
policies for planning domains where the two-variable fragment is insufficient.

7.3 Discussion
We introduced a method for testing whether 𝑘-WL, C𝑘, and ACR-GNNs have
sufficient expressivity for several planning benchmark sets. Our method lever-
ages the close relationship between those languages from the literature (Cai
et al. 1992; Barceló et al. 2020; Grohe 2021). Our experimental results show
that 2-FWL and C3 always suffice for our benchmark sets, a computationally
manageable level of expressive power. Furthermore, 1-WL, C2, and ACR-GNNs
often suffices (Barceló et al. 2020). While our method does not give strong
guarantees for learning general plans, our findings often show empirical align-
ment with previous work on learning general policies using graph neural
networks (Ståhlberg, Bonet, et al. 2023).

Our method complements work done in parallel that evaluates whether several
families of graph neural networks have sufficient expressivity for planning
benchmark sets (Horcík and Sír 2024). While their approach uses randomly
initialized graph neural networks from different families to find conflicts in
distinguishing non-isomorphic states, our method precisely assesses whether
the expressive power of the specific ACR-GNN family suffices.

53

7. Expressive Learning Requirements

Our method could enhance previous work on learning heuristic functions over
𝑘-WL features in planning (Chen, Trevizan, et al. 2024). These features are
colorings of earlier iterations 𝑗 of the 𝑘-WL that are not necessarily stable
colorings and, hence, less expressive in distinguishing non-isomorphic states.
These heuristics do not aim to represent general plans but to balance heuristic
informativity with evaluation speed effectively. Our work can find suitable
values of 𝑗 and 𝑘, automatically adapting the method to more complex planning
domains. More specifically, for a given training set, one can find values for 𝑗

and 𝑘 such that the language of 𝑘-WL colorings at iteration 𝑗 has sufficient
expressivity for a benchmark set.

In the context of this work, a promising direction for future work is getting
more fine-grained control over the construction of explicit feature pools over
description logic grammars. This includes developing methods to test whether
the expressive power of a specific description logic suffices. For example, the
expressive power of description logic 𝒜ℒ𝒞𝒬 is equivalent to GC2, which in
turn is less expressive than C2 (Baader et al. 2003). Creating explicit feature
pools with sufficient expressivity for the training set can improve combinatorial
learning methods by reducing the number of overly complex features.

In summary, our method can assess whether the expressive power of several
languages suffices for a given benchmark set, helping systems dynamically
adapt language expressivity for learning to plan.

Building on the insights of this chapter on analyzing the expressivity require-
ments and the previous chapter on equivalence-based abstractions, we suggest
that further analyzing collections of problems and exploiting the obtained infor-
mation is a key challenge for the effective integration of learning and planning.
An effective integration requires systems to process collections of problems effi-
ciently. Furthermore, since general plans are highly informative, an exponential
preprocessing step, called grounding (Helmert 2009), is often unnecessary.
The next chapter presents a library tailored to address these tasks while sup-
porting expressive planning language features. More specifically, it works with
collections of problems and avoids grounding by working directly on first-order
problem representations.

54

8 Lifted Planning With
Expressive Extensions

A planner is an algorithm that takes as input a problem and aims to find a
plan. The planning domain definition language (PDDL) is a standardized lan-
guage for representing input problems (McDermott et al. 1998). Researchers
incrementally extended the language features for more accurately modeling
complex real-world problems such as support for numeric state variables (Fox
and Long 2003), derived predicates, which are relations derived from basic
predicates (Edelkamp and Hoffmann 2004). Explicit search planners con-
struct a search graph where nodes represent states and edges represent state
transitions caused by applying actions. The two central operations are the
computation of the applicable actions in a state and computing the successor
state when applying an action in a state. The primary planning paradigms are
lifted planning and grounded planning. Lifted planners operate on the lifted
problem representation and determine the applicable ground actions in a state
online using combinatorial approaches such as constraint satisfaction (Francès
2017), conjunctive queries (Corrêa, Pommerening, et al. 2020), or maximum
clique enumeration (Ståhlberg 2023). In the past three decades, research has
shifted focus from the lifted to the grounded planning paradigm (Corrêa and
Giacomo 2024). This trend stems from grounded planners’ effectiveness and
computational efficiency on many benchmark sets. Grounded planners first
generate a ground problem representation by substituting variables in action
schemas with all possible object combinations. This grounding process may

55

8. Lifted Planning With Expressive Extensions

result in a combinatorial explosion in the number of ground atoms, ground ac-
tions, and size of the tree data structure for efficiently retrieving the applicable
ground actions in a state (Helmert 2006). Grounding becomes infeasible with
high-arity predicates, complex dependencies, or a large set of objects.

Heuristic search (Hart et al. 1968) is one of the most widely used explicit
search techniques to solve planning problems. Heuristic search techniques
often solve a relaxed version of the problem, i.e., tractable approximation, and
use it to guide the search in the actual problem (Bonet and Geffner 2001).
Since the relaxed version is a simplified, heuristic values often deviate from
true goal distances, leading to more state expansions. Grounded heuristic
search planners achieve the best results by effectively balancing heuristic infor-
mativity with evaluation speed (e.g., Hoffmann and Nebel 2001). Conversely,
lifted planners require stronger heuristic informativity to balance the higher
costs associated with generating the applicable ground actions in a state by
expanding fewer states. High informativity is central in generalized planning,
where general plans ensure a polynomially bounded number of state expan-
sions. Consequently, general plans can balance the higher costs of generating
the applicable ground actions in a state, making lifted planning a powerful
paradigm for generalized planning (Drexler, Seipp, and Geffner 2024).

As lifted planning has been sidelined for many years, the available planners
to solve planning problems with this paradigm are insufficient. The primary
reason is that several expressive PDDL language features, such as conditional
effects and derived predicates, are not supported. However, these language
features cannot be compiled away without an exponential blowup in the
problem size (Gazen and Knoblock 1997; Nebel 2000; Thiébaux et al. 2005).
Hence, it is beneficial for planners to support these features natively.

To bridge this gap, we present a new version of Mimir (Ståhlberg 2023), a C++
planning library that seamlessly integrates grounded and lifted planning where
we added native support of the abovementioned expressive PDDL features.5 To
the best of our knowledge, no other lifted PDDL-based planner supports these
expressive extensions. We evaluate Mimir against two state-of-the-art planning
systems on three benchmark sets with uninformed (blind) A* search (Hart et al.
1968): Fast Downward (Helmert 2006), a specialized grounded planner and
Powerlifted (Corrêa, Pommerening, et al. 2020), a specialized lifted planner.
Our experimental results show that Mimir competes with state-of-the-art and
performs favorably in lifted planning. In addition, while Mimir is fully written
in C++, it provides Python bindings that support the development of heuristics
directly in Python. Furthermore, it can process multiple problems in memory,
making it a versatile tool for addressing generalized planning.

5Mimir is available at https://github.com/simon-stahlberg/mimir.

56

8.1. Expressive Language Extensions

This chapter is organized as follows. First, we briefly discuss the expressive
PDDL language features. Second, we present the experimental evaluation,
including the objective, the setup, the configurations, the benchmarks, and the
results. Last, we summarize, conclude, and present ideas for future work.

8.1 Expressive Language Extensions

8.1.1 Conditional Effects
Conditional effects are an action effect structure that triggers specific effects
depending on the current state. For example, consider an action to compile a
LaTeX file into a PDF file where the choice of several compile options affects the
outcome. A plan length preserving representation without conditional effects
requires an exponential number of actions, i.e., multiplying out the conditional
effects, resulting in an action without conditional for each combination (Nebel
2000). Conditional effects are also helpful in modeling state-dependent action
costs that also cannot concisely be compiled away (Speck et al. 2021) and are
crucial for accurately modeling complex real-world problems (Geißer 2018).
For example, the action cost for driving a truck from one location to another
might depend on the load in the truck, the traffic on the road, and the gas
price.

8.1.2 Derived Predicates
Derived predicates are predicates whose interpretation, i.e., ground state
atoms, are derived from the ground state atoms over the basic predicates
through axioms. An axiom has a precondition and a single ground atom
over a derived predicate in its effect. Applying an axiom in a state does not
result in a state change but instead adds additional ground atoms to the state.
Axioms are evaluated using fixed-point iteration until no more ground atoms
can be derived. Ground atoms over basic predicates may appear in action
effects. However, ground atoms over derived predicates may only appear in
conditions such as action preconditions, conditional effect preconditions, or
goal conditions (Thiébaux et al. 2005).

Derived predicates are helpful because they can capture complex action pre-
conditions, conditional effect conditions, or goal conditions. For instance, we
can compile quantified conditions into axioms to remove quantifiers and sig-
nificantly simplify the problem structure (Helmert 2009). Derived predicates
and axioms can easily express transitive closure, which is less intuitive with
actions that additionally result in state changes (Thiébaux et al. 2005).

57

8. Lifted Planning With Expressive Extensions

8.2 Experiments
We compare Mimir against two state-of-the-art planning systems, Fast Down-
ward (Helmert 2006) and Powerlifted (Corrêa, Pommerening, et al. 2020), on
three benchmark sets. The outline is as follows: First, we describe the objec-
tives of our experimental evaluation. Second, we describe the setup, including
resource limits and performance metrics. Third, we describe the technical
details of each planner configuration. Fourth, we discuss the benchmark sets.
Last, we present the gathered data and interpret it.

8.2.1 Objective
Our experimental evaluation aims to understand the effectiveness of the in-
ternal data structures and algorithms for searching for a plan by iteratively
expanding states to find a goal state of a given planning problem. Perfor-
mance depends primarily on the planner’s ability to compactly store states,
search nodes, ground actions, and ground axioms, and efficiently generate the
applicable actions for a given state.

Our evaluation uses an uninformed A* search with a blind heuristic. While
using the same heuristics could also ensure fairness, the choice of a blind
heuristic simplifies the comparison by removing heuristic guidance entirely.
Hence, our comparison focuses on the raw computational efficiency of the
planners’ internal data structures and algorithms.

8.2.2 Common Setup
We use the following resource constraint to test the planners’ ability to operate
efficiently within both time and memory limitations:

• Memory limit: 8 GB

• Time limit: 30 minutes

We use the following performance metrics to compare all planners:

• Coverage: the total number of solved problems

• Total time: the geometric mean over the total time in milliseconds
needed to solve all problems.

• Search time: the geometric mean over the search time in milliseconds
needed to solve all problems.

Search time and total time consider problems solved by all planners.

58

8.2. Experiments

8.2.3 Planner configurations
We consider the following planner configurations in our evaluation.

• Fast-Downward is a grounded planner (Helmert 2006). It uses a
dense finite-domain state representation, i.e., the value assigned to
a variable in the state represents one of several mutually exclusive
atoms or potentially none of those. A preprocessing step called mutex
analysis detects these mutually exclusive variables and can result in
a very compact state representation (Helmert 2009). We turn off the
detection of irrelevant variables to obtain comparable search behavior.

• Powerlifted is a lifted planner that uses conjunctive queries for com-
puting the applicable actions in a state (Corrêa, Pommerening, et al.
2020). It uses a sparse state representation, i.e., it only contains ground
atoms that are true in the state, which can be more compact than a
finite-domain representation. However, the contrary usually holds if
the number of atoms in a ground problem representation is small. Pow-
erlifted does not support negative preconditions, derived predicates,
conditional effects, and quantified preconditions.

• Mimir-lifted and Mimir-grounded are lifted, respectively grounded,
planners. The lifted planner uses k-clique enumeration to compute
applicable actions in a state (Ståhlberg 2023). It uses a sparse state
representation. In addition to Powerlifted, Mimir compresses the state
to the smallest required bit-width to represent all atoms in the state.

8.2.4 Benchmarks
In our evaluation, we consider the following benchmark sets, which cover
a diverse set of challenges occurring in planning problems: easy-to-ground
benchmarks that use the simple STRIPS formalism, hard-to-ground benchmarks
in the same formalism, and benchmarks over more expressive formalisms that
allow for more compact encodings.

• STRIPS: The STRIPS benchmark set consists of easy-to-ground planning
domains from the International Planning Competition that use simple
formal STRIPS planning.

• HTG: The HTG benchmark set consists of hard-to-ground planning
domains that use the simple STRIPS planning formalism where the
ground problem representation contains infeasibly large numbers of
ground atoms and/or actions.

59

8. Lifted Planning With Expressive Extensions

• ADL: The ADL benchmark set consists of easy-to-ground planning do-
mains from the International Planning Competition that use more PDDL
language features such as negative preconditions, derived predicates,
disjunctive preconditions, quantified-preconditions, and conditional
effects.

8.2.5 Overview of the Results

Planner Coverage Total Time [ms] Search Time [ms]

ST
R

IP
S Fast-Downward 659 1273 261

Mimir-grounded 611 756 313
Powerlifted 539 6958 6050
Mimir-lifted 598 2574 1692

H
TG

Fast-Downward 108 3132 102
Mimir-grounded 88 3270 61
Powerlifted 135 344 217
Mimir-lifted 137 522 270

A
D

L

Fast-Downward 365 2394 399
Mimir-grounded 336 1334 599
Powerlifted – – –
Mimir-lifted 299 5722 4544

Table 8.1: Comparison of the planner configurations on three benchmark
sets: hard-to-ground (HTG), optimal STRIPS (STRIPS), and optimal ADL
(ADL) of the International Planning Competition (IPC), showing the total
number of solved problems (Coverage), the geometric mean of the total time
in milliseconds (Total Time), and the search time in milliseconds (Search
Time). We denote configurations with insufficient PDDL language support on
a benchmark set by “–”. We highlight the best configuration with boldface.

Table 8.1 shows the results of running all planner configurations on all bench-
mark sets. On easy-to-ground benchmarks, Fast-Downward has the lowest
search time and overall highest coverage on the IPC STRIPS and ADL bench-
marks. The preprocessing step is costly, resulting in a higher total time than
Mimir-grounded. Fast-Downward and Mimir-grounded achieve comparable
search time scores. The higher coverage suggests that Fast Downward’s state
representation is more compact, allowing it to generate more states. Power-
lifted has the best runtime score on hard-to-ground benchmarks. However,
Powerlifted achieves significantly worse scores in all three performance metrics
in easy-to-ground benchmarks. The comparison to lifted planners suggest
that Fast-Downward’s and Mimir’s grounding step costs a comparable and
significant amount of time on hard-to-ground benchmarks. Mimir’s costs are

60

8.2. Experiments

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

un
s.

unsolved

Fast-Downward (lower for 254 problems)

M
im

ir
-g

ro
un

de
d

(l
ow

er
fo

r
35

3
pr

ob
le

m
s)

Total Time [ms] on STRIPS

easy problem
hard problem
equal performance
speedup by 10
speedup by 100

Figure 8.1: A pairwise comparison between Mimir-grounded and Fast Down-
ward on the STRIPS benchmark, comparing the total time in milliseconds
required to find a plan. We label a problem “easy” if both configurations
require less than 10000 milliseconds, and otherwise, we label it “hard”.

even higher because the tree structure used to retrieve applicable actions is
based on a less compact state representation than Fast-Downward’s, based
on a compact finite-domain state representation (FDR). While the overall
comparison in Table 8.1 highlights major trends, a deeper dive into pairwise
comparisons helps explain the observed differences in total time.

8.2.6 Grounded Comparison
Figure 8.1 shows the pairwise comparison between Fast-Downward and Mimir-
grounded on the STRIPS benchmark set. We label a problem “easy” if both
configurations require less than 10000 milliseconds, and otherwise, we label it
“hard”. On easy problems, Mimir-grounded often finds a plan quicker because it
does not perform the mutex analysis preprocessing step, which Fast-Downward
uses to derive a compact finite-domain state representation. On hard problems,
Fast-Downward is often faster by a small constant factor. Fast-Downward
solves significantly more problems, indicating that its state representation is
more compact, allowing it to generate more states.

61

8. Lifted Planning With Expressive Extensions

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

un
s.

unsolved

Powerlifted (lower for 96 problems)

M
im

ir
-l

if
te

d
(l

ow
er

fo
r

36
pr

ob
le

m
s)

Total Time [ms] on HTG

easy problem
hard problem
equal performance
speedup by 10
speedup by 100

Figure 8.2: A pairwise comparison between Mimir-lifted and Powerlifted
configurations on the HTG benchmark set, comparing the total time in millisec-
onds required to find a plan. We label a problem “easy” if both configurations
require less than 10000 milliseconds, and otherwise, we label it “hard”.

8.2.7 Lifted Comparison
Figure 8.2 shows the pairwise comparison between Powerlifted and Mimir-
lifted on the HTG benchmark set. We use the labeling of “easy” and “hard”
problems from before. On easy problems, Powerlifted performs better because
Mimir computes static consistency graphs for each action schema (Ståhlberg
2023) that are quadratic in the number of possible assignments of objects to
variables in the action. The advantage diminishes for hard problems, showing
only a slight advantage of Powerlifted but solving two fewer problems overall.

Figure 8.3 shows the pairwise comparison between Powerlifted and Mimir-
lifted on the STRIPS benchmark set. We use the labeling of “easy” and “hard”
problems from before. On easy and hard problems, Mimir-lifted performs
better, indicating that computing the static consistency graph becomes less
of a concern as the number of objects per problem in the benchmark set is
much smaller than in the HTG benchmark set. On hard problems, Mimir-lifted
almost strictly outperforms Powerlifted while solving a significantly higher
number of problems. Since the number of ground atoms is small, we suspect
that Mimir’s state compression step is advantageous, allowing it to generate
more states.

62

8.3. Discussion

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

un
s.

unsolved

Powerlifted (lower for 114 problems)

M
im

ir
-l

if
te

d
(l

ow
er

fo
r

42
3

pr
ob

le
m

s)
Total Time [ms] on STRIPS

easy problem
hard problem
equal performance
speedup by 10
speedup by 100

Figure 8.3: A pairwise comparison between Mimir-lifted and Powerlifted on
the STRIPS benchmark, comparing the total time in milliseconds required to
find a plan. We label a problem “easy” if both configurations require less than
10000 milliseconds, and otherwise, we label it “hard”.

8.3 Discussion
We introduced a new version of Mimir, a planning library optimized for the
lifted problem representation. We added support for expressive PDDL features
like conditional effects and derived predicates for compactly modeling complex
real-world problems. While Mimir is optimized for the lifted problem represen-
tation, it can optionally operate on the ground problem representation, which
results in significant speedups if grounding is feasible. Mimir can work with
sets of problems, establishing it as an invaluable tool for generalized planning,
where general plans are often learned from sets of example problems.

While Mimir also incorporates well-known search algorithms like A* (Hart
et al. 1968), its primary focus lies in employing efficient algorithms and data
structures for the essential core functionalities critical to developing planners:
1) the computation of all applicable ground actions in a given state, and 2)
the computation of the successor state when applying a ground action in the
state. We use a k-clique enumeration for finding applicable ground actions
(Ståhlberg 2023), which natively supports negative preconditions, while other
precondition features are compiled away.

63

8. Lifted Planning With Expressive Extensions

We conducted an experimental evaluation to test Mimir’s ability to execute the
above two core functionalities efficiently under time and memory constraints.
Our comparison with state-of-the-art planners shows that Mimir is competi-
tive on the grounded representation and competes or often outperforms on
the lifted problem representation. The significant advantages of the lifted
representation on the STRIPS benchmarks, which often contain few ground
atoms, suggest that our state compression mechanism to the smallest required
bit-width is advantageous.

Building on Mimir’s strengths, our future work aims to expand its efficiency
and scalability and handle increasingly more complex planning environments.
The focus on the core planning functionality, such as computing the applicable
ground actions in a state and computing the successor state by applying a
ground action in a state, makes it straightforward to integrate more expressive
formalisms, such as numeric, probabilistic, or non-deterministic planning.

A natural next step is integrating numeric planning by extending the state with
numeric variables, extending actions with numeric effects, and incorporating
numeric constraints and effects into the k-clique-based applicable action gener-
ator. Our future work can help researchers address more complex generalized
planning problems with the grounded or lifted paradigm.

64

9 Conclusions

We showed that policy sketches can represent the common subgoal structure in
many classical planning domains. Policy sketches are rules that split problems
into subproblems whose polynomial complexity is characterized by the notion
of width. We showed that policy sketches and the notion of width can illumi-
nate the long-standing problem of uncovering effective hierarchical structures
in artificial intelligence. We discussed its limitation in regards to reuse towards
different problem classes. To overcome this limitation, we discussed a language
extension called modules that parameterize policy sketches and make them
reusable. We presented methods for learning policy sketches and hierarchical
policies based on combinatorial optimization. Our solutions are interpretable
and contain a few syntactic elements, allowing us to show their correctness
for an entire problem class by hand. When the learning fails, it typically stems
from limited scalability or a lack of expressivity. To address the scalability
limitation, we introduced equivalence-based abstractions. Equivalence-based
abstraction uses a notion of state symmetry (isomorphisms) to reduce the
number of states during learning. To address the issue of expressivity, we
introduced a method for testing the expressivity requirements of benchmark
sets of problems over planning domains. An empirical evaluation of several
benchmark sets shows that the expressivity needed is often upper bounded by
three-variable first-order logic with counting quantifiers. Our method is a tool
to understand failures and guide the approach towards the needed expressivity.

65

9. Conclusions

We also make steps towards building a library for generalized planning, which
completely avoids an exponential grounding step that is often unnecessary in
generalized planning and supports expressive language extensions such as con-
ditional effects and derived predicates that cannot concisely be compiled away,
allowing researchers to address and model more complex real-world planning
domains. Our experimental results show that our library is competitive with
state-of-the-art systems or outperforms them.

Our findings contribute to the practical and theoretical foundation of gen-
eralized planning by providing characterizations and methods for learning
subgoal structures, abstractions based on symmetry reductions for more ef-
ficient learning, tools to explain failures of learning general plans, and an
expressive planning library focusing on generalized planning.

66

Bibliography

Aichmüller, Michael and Hector Geffner (2024). Learning Sketch
Decompositions in Planning via Deep Reinforcement Learning.
arXiv:2412.08574v1 [cs.AI].

Baader, Franz, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, eds. (2003). The Descrip-
tion Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press.

Babai, László (2016). “Graph isomorphism in quasipolynomial
time [extended abstract]”. In: Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing. Association
for Computing Machinery, pp. 684–697.

Bacchus, Fahiem and Froduald Kabanza (2000). “Using Temporal
Logics to Express Search Control Knowledge for Planning”. In:
Artificial Intelligence 116.1–2, pp. 123–191.

Barceló, Pablo, Egor Kostylev, Mikaël Monet, Jorge Pérez, Juan
Reutter, and Juan-Pablo Silva (2020). “The Logical Expres-
siveness of Graph Neural Networks”. In: Proceedings of the
Eighth International Conference on Learning Representations
(ICLR 2020). OpenReview.net.

67

Bibliography

Barto, Andrew G. and Sridhar Mahadevan (2003). “Recent Ad-
vances in Hierarchical Reinforcement Learning”. In: Discrete
Event Dynamic Systems 13.1, pp. 41–77.

Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston (2009). “Curriculum Learning”. In: Proceedings of
the 26th International Conference on Machine Learning (ICML
2009). ACM, pp. 41–48.

Bonet, Blai, Dominik Drexler, and Hector Geffner (2023). “Gen-
eral and Reusable Indexical Policies and Sketches”. In: NeurIPS
2023 Workshop on Generalization in Planning.

— (2024). “On Policy Reuse: An Expressive Language for Rep-
resenting and Executing General Policies that Call Other Poli-
cies”. In: Proceedings of the Thirty-Fourth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2024). Ed.
by Sara Bernardini and Christian Muise. AAAI Press, pp. 31–
39.

Bonet, Blai and Héctor Geffner (2001). “Planning as Heuristic
Search”. In: Artificial Intelligence 129.1, pp. 5–33.

Bonet, Blai and Hector Geffner (2018). “Features, Projections,
and Representation Change for Generalized Planning”. In:
Proceedings of the 27th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2018). Ed. by Jérôme Lang. IJCAI,
pp. 4667–4673.

— (2020). “Qualitative Numeric Planning: Reductions and Com-
plexity”. In: Journal of Artificial Intelligence Research 69,
pp. 923–961.

— (2021). “General Policies, Representations, and Planning
Width”. In: Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown
and Mausam. AAAI Press, pp. 11764–11773.

— (2024). “General Policies, Subgoal Structure, and Planning
Width”. In: Journal of Artificial Intelligence Research 80. DOI:
10.1613/jair.1.15581.

Bylander, Tom (1994). “The Computational Complexity of Propo-
sitional STRIPS Planning”. In: Artificial Intelligence 69.1–2,
pp. 165–204.

68

Bibliography

Cai, Jin-Yi, Martin Fürer, and Neil Immerman (1992). “An optimal
lower bound on the number of variables for graph identifica-
tion”. In: Combinatorica 12.4, pp. 389–410.

Chen, Dillon Z., Sylvie Thiébaux, and Felipe W. Trevizan (2024).
“Learning Domain-Independent Heuristics for Grounded and
Lifted Planning”. In: Proceedings of the Thirty-Eighth AAAI Con-
ference on Artificial Intelligence (AAAI 2024). Ed. by Jennifer
Dy and Sriraam Natarajan. AAAI Press, pp. 20078–20086.

Chen, Dillon Z., Felipe W. Trevizan, and Sylvie Thiébaux (2024).
“Return to Tradition: Learning Reliable Heuristics with Clas-
sical Machine Learning”. In: Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Schedul-
ing (ICAPS 2024). Ed. by Sara Bernardini and Christian Muise.
AAAI Press, pp. 68–76.

Corrêa, Augusto B. and Giuseppe De Giacomo (2024). “Lifted
Planning: Recent Advances in Planning Using First-Order Rep-
resentations”. In: Proceedings of the 33rd International Joint
Conference on Artificial Intelligence (IJCAI 2024). IJCAI.

Corrêa, Augusto B., Florian Pommerening, Malte Helmert, and
Guillem Francès (2020). “Lifted Successor Generation us-
ing Query Optimization Techniques”. In: Proceedings of the
Thirtieth International Conference on Automated Planning and
Scheduling (ICAPS 2020). Ed. by J. Christopher Beck, Erez
Karpas, and Shirin Sohrabi. AAAI Press, pp. 80–89.

Dietterich, Thomas G. (2000). “Hierarchical Reinforcement Learn-
ing with the MAXQ Value Function Decomposition”. In: Jour-
nal of Artificial Intelligence Research 13, pp. 227–303.

Drexler, Dominik, Daniel Gnad, Paul Höft, Jendrik Seipp, David
Speck, and Simon Ståhlberg (2023). “Ragnarok”. In: Tenth
International Planning Competition (IPC-10): Planner Abstracts.

Drexler, Dominik, Javier Segovia-Aguas, and Jendrik Seipp
(2022). “Learning General Policies and Helpful Action Classi-
fiers from Partial State Spaces”. In: IJCAI 2022 Workshop on
Generalization in Planning.

69

Bibliography

Drexler, Dominik and Jendrik Seipp (2023). “DLPlan: Description
Logics State Features for Planning”. In: ICAPS 2023 System
Demonstrations and Exhibits.

Drexler, Dominik, Jendrik Seipp, and Hector Geffner (2021). “Ex-
pressing and Exploiting the Common Subgoal Structure of
Classical Planning Domains Using Sketches”. In: Proceedings of
the Eighteenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2021). Ed. by Esra
Erdem, Meghyn Bienvenu, and Gerhard Lakemeyer. IJCAI Or-
ganization, pp. 258–268.

— (2022). “Learning Sketches for Decomposing Planning Prob-
lems into Subproblems of Bounded Width”. In: Proceedings
of the Thirty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2022). Ed. by Sylvie Thiébaux
and William Yeoh. AAAI Press, pp. 62–70.

— (2023). “Learning Hierarchical Policies by Iteratively Reducing
the Width of Sketch Rules”. In: Proceedings of the Twentieth
International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2023). Ed. by Pierre Marquis, Tran Cao
Son, and Gabriele Kern-Isberner. IJCAI Organization, pp. 208–
218.

— (2024). “Expressing and Exploiting Subgoal Structure in Clas-
sical Planning Using Sketches”. In: Journal of Artificial Intelli-
gence Research 80, pp. 171–208.

Drexler, Dominik, Jendrik Seipp, and David Speck (2023). “Odin:
A Planner Based on Saturated Transition Cost Partitioning”.
In: Tenth International Planning Competition (IPC-10): Planner
Abstracts.

Drexler, Dominik, Simon Ståhlberg, Blai Bonet, and Hector
Geffner (2024a). “Equivalence-Based Abstractions for Learn-
ing General Policies”. In: ICAPS 2024 Workshop on Bridging the
Gap Between AI Planning and Reinforcement Learning (PRL).

— (2024b). “Symmetries and Expressive Requirements for Learn-
ing General Policies”. In: Proceedings of the Twenty-First Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR 2024). IJCAI Organization.

70

Bibliography

Dumancic, Sebastijan, Tias Guns, and Andrew Cropper (2021).
“Knowledge refactoring for inductive program synthesis”. In:
Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown and
Mausam. AAAI Press, pp. 7271–7278.

Edelkamp, Stefan and Jörg Hoffmann (2004). PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Tech. rep. 195. University of Freiburg, Depart-
ment of Computer Science.

Ellis, Kevin, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer,
Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-Lezama,
and Joshua B. Tenenbaum (2020). DreamCoder: Growing gen-
eralizable, interpretable knowledge with wake-sleep Bayesian
program learning. arXiv:2006.08381 [cs.AI].

Erol, Kutluhan, James Hendler, and Dana S. Nau (1994). “HTN
planning: complexity and expressivity”. In: Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI
1994). AAAI Press, pp. 1123–1128.

Ferber, Patrick, Liat Cohen, Jendrik Seipp, and Thomas Keller
(2022). “Learning and Exploiting Progress States in Greedy
Best-First Search”. In: Proceedings of the 31st International
Joint Conference on Artificial Intelligence (IJCAI 2022). Ed. by
Luc De Raedt. IJCAI, pp. 4740–4746.

Fern, Alan, Sung Wook Yoon, and Robert Givan (2004). “Learning
Domain-Specific Control Knowledge from Random Walks”.
In: Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004). Ed. by
Shlomo Zilberstein, Jana Koehler, and Sven Koenig. AAAI
Press, pp. 191–198.

Fox, Maria and Derek Long (1999). “The Detection and Exploita-
tion of Symmetry in Planning Problems”. In: Proceedings of
the Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 1999). Ed. by Thomas Dean. Morgan Kaufmann,
pp. 956–961.

71

Bibliography

Fox, Maria and Derek Long (2003). “PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains”. In: Journal
of Artificial Intelligence Research 20, pp. 61–124.

Francès, Guillem (2017). “Effective Planning with Expressive
Languages”. PhD thesis. Universitat Pompeu Fabra.

Francès, Guillem, Blai Bonet, and Hector Geffner (2021). “Learn-
ing General Planning Policies from Small Examples Without
Supervision”. In: Proceedings of the Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-
Brown and Mausam. AAAI Press, pp. 11801–11808.

Francès, Guillem, Augusto B. Corrêa, Cedric Geissmann, and Flo-
rian Pommerening (2019). “Generalized Potential Heuristics
for Classical Planning”. In: Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2019).
Ed. by Sarit Kraus. IJCAI, pp. 5554–5561.

Garey, Michael R. and David S. Johnson (1979). Computers and
Intractability — A Guide to the Theory of NP-Completeness.
Freeman.

Gazen, B. Cenk and Craig A. Knoblock (1997). “Combining the
Expressivity of UCPOP with the Efficiency of Graphplan”. In:
Recent Advances in AI Planning. 4th European Conference on
Planning (ECP 1997). Ed. by Sam Steel and Rachid Alami.
Vol. 1348. Lecture Notes in Artificial Intelligence. Springer-
Verlag, pp. 221–233.

Gebser, Martin, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub (2012). Answer Set Solving in Practice. Morgan
& Claypool Publishers.

Geißer, Florian (2018). “On Planning with State-dependent Action
Costs”. PhD thesis. University of Freiburg.

Gelfond, Michael and Vladimir Lifschitz (1988). “The stable model
semantics for logic programming.” In: ICLP/SLP. Vol. 88. Cam-
bridge, MA, pp. 1070–1080.

Grohe, Martin (2021). “The Logic of Graph Neural Networks”. In:
Proceedings of the Thirty-Sixth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2021), pp. 1–17.

72

Bibliography

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A
Formal Basis for the Heuristic Determination of Minimum Cost
Paths”. In: IEEE Transactions on Systems Science and Cybernetics
4.2, pp. 100–107.

Helmert, Malte (2006). “The Fast Downward Planning System”.
In: Journal of Artificial Intelligence Research 26, pp. 191–246.

— (2009). “Concise Finite-Domain Representations for PDDL
Planning Tasks”. In: Artificial Intelligence 173, pp. 503–535.

Hoffmann, Jörg and Bernhard Nebel (2001). “The FF Planning
System: Fast Plan Generation Through Heuristic Search”. In:
14, pp. 253–302.

Horcík, Rostislav and Gustav Sír (2024). “Expressiveness of Graph
Neural Networks in Planning Domains”. In: Proceedings of the
Thirty-Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2024). Ed. by Sara Bernardini and
Christian Muise. AAAI Press, pp. 281–289.

Icarte, Rodrigo Toro, Toryn Q. Klassen, Richard Valenzano, and
Sheila A. McIlraith (2022). “Reward Machines: Exploiting
Reward Function Structure in Reinforcement Learning”. In:
Journal of Artificial Intelligence Research 73, pp. 173–208.

Immerman, Neil (1998). Descriptive Complexity. Springer Verlag.
Jiménez, Sergio, Javier Segovia-Aguas, and Anders Jonsson

(2019). “A Review of Generalized Planning”. In: The Knowl-
edge Engineering Review 34, e5.

Knoblock, Craig A. (1994). “Automatically Generating Abstrac-
tions for Planning”. In: Artificial Intelligence 68.2, pp. 243–
302.

LeCun, Yann (2022). A Path Towards Autonomous Machine Intel-
ligence. https://openreview.net/forum?id=BZ5a1r-kVsf.
Accessed: 2024-09-06.

Lipovetzky, Nir and Hector Geffner (2012). “Width and Serial-
ization of Classical Planning Problems”. In: Proceedings of the
20th European Conference on Artificial Intelligence (ECAI 2012).
Ed. by Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick
Doherty, Paolo Frasconi, Fredrik Heintz, and Peter Lucas. IOS
Press, pp. 540–545.

73

Bibliography

Lipovetzky, Nir and Hector Geffner (2017). “Best-First Width
Search: Exploration and Exploitation in Classical Planning”.
In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI 2017). Ed. by Satinder Singh and Shaul
Markovitch. AAAI Press, pp. 3590–3596.

Martín, Mario and Hector Geffner (2000). “Learning Generalized
Policies from Planning Examples Using Concept Languages”.
In: Proceedings of the Sixth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2000).
Ed. by Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman.
Morgan Kaufmann, pp. 667–677.

— (2004). “Learning Generalized Policies from Planning Exam-
ples Using Concept Languages”. In: Applied Intelligence 20.1,
pp. 9–19.

McDermott, Drew, Malik Ghallab, Adele Howe, Craig Knoblock,
Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins
(1998). PDDL – The Planning Domain Definition Language –
Version 1.2. Tech. rep. CVC TR-98-003/DCS TR-1165. Yale
University: Yale Center for Computational Vision and Control.

McGovern, Amy and Andrew G. Barto (2001). “Automatic Dis-
covery of Subgoals in Reinforcement Learning using Diverse
Density”. In: Proceedings of the Eighteenth International Confer-
ence on Machine Learning (ICML 2001). Ed. by Carla E. Brodley
and Andrea Pohoreckyj Danyluk. ACM, pp. 361–368.

McKay, Brendan D. and Adolfo Piperno (2014). “Practical graph
isomorphism, II”. In: Journal of Symbolic Computation 60,
pp. 94–112. DOI: https://doi.org/10.1016/j.jsc.2013.
09.003.

Nebel, Bernhard (2000). “On the Compilability and Expressive
Power of Propositional Planning Formalisms”. In: Journal of
Artificial Intelligence Research 12, pp. 271–315.

Parr, Ronald and Stuart Russell (1997). “Reinforcement Learning
with Hierarchies of Machines”. In: Proc. NeurIPS, pp. 1043–
1049.

Pochter, Nir, Aviv Zohar, and Jeffrey S. Rosenschein (2011). “Ex-
ploiting Problem Symmetries in State-Based Planners”. In:

74

Bibliography

Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2011). Ed. by Wolfram Burgard and Dan
Roth. AAAI Press, pp. 1004–1009.

Ramirez, Miquel, Nir Lipovetzky, and Christian Muise (2015).
Lightweight Automated Planning ToolKiT. http://lapkt.org/.

Richter, Silvia and Matthias Westphal (2010). “The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks”. In:
Journal of Artificial Intelligence Research 39, pp. 127–177.

Sacerdoti, Earl D. (1974). “Planning in a Hierarchy of Abstraction
Spaces”. In: Artificial Intelligence 5, pp. 115–135.

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini (2009). “The Graph Neural
Network Model”. In: IEEE Transactions on Neural Networks
20.1, pp. 61–80.

Segovia-Aguas, Javier, Sergio Jiménez, and Anders Jonsson
(2019). “Computing programs for generalized planning using
a classical planner”. In: Artificial Intelligence 272, pp. 52–85.

Seipp, Jendrik, Álvaro Torralba, and Jörg Hoffmann (2022). PDDL
Generators. https://doi.org/10.5281/zenodo.6382173.

Sievers, Silvan, Gabriele Röger, Martin Wehrle, and Michael Katz
(2019). “Theoretical Foundations for Structural Symmetries
of Lifted PDDL Tasks”. In: Proceedings of the Twenty-Ninth In-
ternational Conference on Automated Planning and Scheduling
(ICAPS 2019). Ed. by Nir Lipovetzky, Eva Onaindia, and David
E. Smith. AAAI Press, pp. 446–454.

Singh, Satinder P., Richard L. Lewis, Andrew G. Barto, and
Jonathan Sorg (2010). “Intrinsically motivated reinforcement
learning: An evolutionary perspective”. In: IEEE Transactions
on Autonomous Mental Development 2, pp. 70–82.

Speck, David, David Borukhson, Robert Mattmüller, and Bern-
hard Nebel (2021). “On the Compilability and Expressive
Power of State-Dependent Action Costs”. In: Proceedings of
the Thirty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2021). Ed. by Robert P. Goldman,
Susanne Biundo, and Michael Katz. AAAI Press, pp. 358–366.

75

Bibliography

Ståhlberg, Simon (2023). “Lifted Successor Generation by Maxi-
mum Clique Enumeration”. In: Proceedings of the 26th Euro-
pean Conference on Artificial Intelligence (ECAI 2023). Ed. by
Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and
Roxana Rădulescu. IOS Press, pp. 2194–2201.

Ståhlberg, Simon, Blai Bonet, and Hector Geffner (2022a). “Learn-
ing General Optimal Policies with Graph Neural Networks:
Expressive Power, Transparency, and Limits”. In: Proceedings
of the Thirty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2022). Ed. by Sylvie Thiébaux
and William Yeoh. AAAI Press, pp. 629–637.

— (2022b). “Learning Generalized Policies without Supervision
Using GNNs”. In: Proceedings of the Nineteenth International
Conference on Principles of Knowledge Representation and Rea-
soning (KR 2022). Ed. by Gabriele Kern-Isberner, Gerhard
Lakemeyer, and Thomas Meyer. IJCAI Organization, pp. 474–
483.

— (2023). “Learning General Policies with Policy Gradient Meth-
ods”. In: Proceedings of the Twentieth International Conference
on Principles of Knowledge Representation and Reasoning (KR
2023). Ed. by Pierre Marquis, Tran Cao Son, and Gabriele
Kern-Isberner. IJCAI Organization.

— (2025). “Learning More Expressive General Policies for Clas-
sical Planning Domains”. In: Proceedings of the Thirty-Ninth
AAAI Conference on Artificial Intelligence (AAAI 2025). AAAI
Press.

Ståhlberg, Simon, Guillem Francès, and Jendrik Seipp (2021).
“Learning Generalized Unsolvability Heuristics for Classical
Planning”. In: Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence (IJCAI 2021). Ed. by Zhi-Hua
Zhou. IJCAI, pp. 4175–4181.

Tate, Austin (1977). “Generating Project Networks”. In: Proc.
IJCAI, pp. 888–893.

Thiébaux, Sylvie, Jörg Hoffmann, and Bernhard Nebel (2005). “In
Defense of PDDL Axioms”. In: Artificial Intelligence 168.1–2,
pp. 38–69.

76

Bibliography

Torralba, Álvaro (2018). “Completeness-Preserving Dominance
Techniques for Satisficing Planning”. In: Proceedings of the
27th International Joint Conference on Artificial Intelligence
(IJCAI 2018). Ed. by Jérôme Lang. IJCAI, pp. 4844–4851.

Torralba, Álvaro and Jörg Hoffmann (2015). “Simulation-Based
Admissible Dominance Pruning”. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI
2015). Ed. by Qiang Yang and Michael Wooldridge. AAAI Press,
pp. 1689–1695.

Vallati, Mauro, Lukás Chrpa, and Thomas Leo McCluskey (2018).
“What you always wanted to know about the deterministic
part of the International Planning Competition (IPC) 2014
(but were too afraid to ask)”. In: The Knowledge Engineering
Review 33.

Weisfeiler, Boris and Andrei Leman (1968). “The Reduction of
a Graph to a Canonical Form and an Algebra Arising During
This Reduction.” In: Nauchno-Technicheskaya Informatsia.

Yoon, Sungwook, Alan Fern, and Robert Givan (2008). “Learning
Control Knowledge for Forward Search Planning”. In: Journal
of Machine Learning Research 9, pp. 683–718.

Zheng, Zeyu, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel
Kroiss, Hado van Hasselt, David Silver, and Satinder Singh
(2020). “What Can Learned Intrinsic Rewards Capture?” In:
Proceedings of the 37th International Conference on Machine
Learning (ICML 2020). JMLR.org, pp. 11436–11446.

77

Papers

The papers associated with this thesis have been removed for
copyright reasons. For more details about these see:

https://doi.org/10.3384/9789181180206

https://doi.org/10.3384/9789181180206

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

Linköping Studies in Arts and Sciences
Linköping Studies in Statistics

Linköping Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X.

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

No 1354 Mikael Asplund: Disconnected Discoveries:
Availability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

No 1374 Jan-Erik Källhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control – Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

No 1481 David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

No 1547 Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

No 1652 Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks –
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

No 1729 Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

No 1733 Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

No 1734 Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

No 1746 Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

No 1747 Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748 Dag Sonntag: Chain Graphs – Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

No 1768 Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

No 1778 Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.

No 1798 Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

No 1813 Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

No 1823 Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

No 1831 Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

No 1851 Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

No 1852 Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.

No 1854 Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

No 1863 Simon Ståhlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

No 1879 Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

No 1887 Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.

No 1891 Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

No 1902 Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

No 1903 Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

No 1913 Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.

No 1936 Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

No 1964 Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

No 1967 Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

No 1984 Anders Andersson: Distributed Moving Base
Driving Simulators – Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

No 1993 Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No 2001 Tim Overkamp: How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.

No 2006 Daniel de Leng: Robust Stream Reasoning Under
Uncertainty, 2019, ISBN 978-91-7685-013-8.

No 2048 Biman Roy: Applications of Partial Polymorphisms
in (Fine-Grained) Complexity of Constraint
Satisfaction Problems, 2020, ISBN 978-91-7929-898-2.

No 2051 Olov Andersson: Learning to Make Safe Real-Time
Decisions Under Uncertainty for Autonomous
Robots, 2020, ISBN 978-91-7929-889-0.

No 2065 Vanessa Rodrigues: Designing for Resilience:
Navigating Change in Service Systems, 2020, ISBN
978-91-7929-867-8.

No 2082 Robin Kurtz: Contributions to Semantic Dependency
Parsing: Search, Learning, and Application, 2020,
ISBN 978-91-7929-822-7.

No 2108 Shanai Ardi: Vulnerability and Risk Analysis
Methods and Application in Large Scale
Development of Secure Systems, 2021, ISBN 978-91-
7929-744-2.

No 2125 Zeinab Ganjei: Parameterized Verification of
Synchronized Concurrent Programs, 2021, ISBN 978-
91-7929-697-1.

No 2153 Robin Keskisärkkä: Complex Event Processing
under Uncertainty in RDF Stream Processing, 2021,
ISBN 978-91-7929-621-6.

No 2168 Rouhollah Mahfouzi: Security-Aware Design of
Cyber-Physical Systems for Control Applications,
2021, ISBN 978-91-7929-021-4.

No 2205 August Ernstsson: Pattern-based Programming
Abstractions for Heterogeneous Parallel Computing,
2022, ISBN 978-91-7929-195-2.

No 2218 Huanyu Li: Ontology-Driven Data Access and Data
Integration with an Application in the Materials
Design Domain, 2022, ISBN 978-91-7929-267-6.

No 2219 Evelina Rennes: Automatic Adaption of Swedish
Text for Increased Inclusion, 2022, ISBN 978-91-7929-
269-0.

No 2220 Yuanbin Zhou: Synthesis of Safety-Critical Real-
Time Systems, 2022, ISBN 978-91-7929-271-3.

No 2247 Azeem Ahmad: Contributions to Improving
Feedback and Trust in Automated Testing and
Continuous Integration and Delivery, 2022, ISBN 978-
91-7929-422-9.

No 2248 Ana Kuštrak Korper: Innovating Innovation:
Understanding the Role of Service Design in Service
Innovation, 2022, ISBN 978-91-7929-424-3.

No 2256 Adrian Horga: Performance and Security Analysis
for GPU-Based Applications, 2022, ISBN 978-91-7929-
487-8.

No 2262 Mattias Tiger: Safety-Aware Autonomous Systems:
Preparing Robots for Life in the Real World 2022,
ISBN 978-91-7929-501-1.

No 2266 Chih-Yuan Lin: Network-based Anomaly Detection
for SCADA Systems: Traffic Generation and
Modeling, 2022, ISBN 978-91-7929-517-2.

No 2280 Filip Strömbäck: Teaching and Learning Concurrent
Programming in the Shared Memory Model, 2023,
ISBN 978-91-8075-000-4.

No 2298 Fiona Lambe: Devising Capabilities: Service Design
for Development Interventions, 2023, ISBN 978-91-
8075-080-6.

No 2309 Alachew Mengist: Model-Based Tools Integration
and Ontology-Driven Traceability in Model-Based
Development Environments, 2023, ISBN 978-91-8075-
143-8.

No 2322 Mariusz Wzorek: Selected Functionalities for
Autonomous Intelligent Systems in Public Safety
Scenarios, 2023, ISBN 978-91-8075-195-7.

No 2329 Felipe Boeira: Authentic Communication and
Trustworthy Location in Mobile Networks, 2023,
ISBN 978-91-8075-256-5.

No 2351 Johan Källström: Reinforcement Learning for
Improved Utility of Simulation-Based Training, 2023,
ISBN 978-91-8075-366-1.

No 2364 Jenny Kunz: Understanding Large Language
Models: Towards Rigorous and Targeted
Interpretability Using Probing Classifiers and Self-
Rationalisation, 2024, ISBN 978-91-8075-470-5.

No 2366 Sijin Cheng: Query Processing over Heterogeneous
Federations of Graph Data, 2024, ISBN 978-91-8075-
488-0.

No 2368 George Osipov: On Infinite-Domain CSPs
Parameterized by Solution Cost, 2024, ISBN 978-91-
8075-496-5.

No 2382 Fredrik Präntare: Dividing the Indivisible:
Algorithms, Empiricial Advances, and Complexity
Results for Value-Maximizing Combinatorial
Assignment Problems, 2024, ISBN 978-91-8075-600-6.

No 2383 Alireza Mohammadinodooshan: Data-driven
Contributions to Understanding User Engagement
Dynamics on Social Media, 2024, ISBN 978-91-8075-
606-8.

No 2384 Rodrigo Saar de Moraes: Exploring Trade-offs in
Concept Design of Integrated Modular Avionic
Platform Configurations: Topology Generation,
Resource Adequacy, and Dependability, 2024, ISBN
978-91-8075-13-16.

No 2392 Minh Ha Le: Beyond Recognition: Privacy
Protections in a Surveilled World, 2024, ISBN 978-91-
8075-675-4.

No 2403 Klervie Toczé: Orchestrating a Resource-aware
Edge, 2024, ISBN 978-91-8075-747-8.

No 2264 Robert Johansson: Empirical Studies in Machine
Psychology, 2024, ISBN 978-91-7929-505-9.

No 2429 Mina Niknafs: Prediction-Based Resource
Management for Heterogeneous Multi-Core
Embedded Systems, 2025, ISBN 978-91-8075-960-1.

No 2439 Dominik Drexler: Learning and Exploiting Subgoal
Structures in Classical Planning: Towards Reliable
and Transparent Intelligent Agents that Learn to
Plan on Multiple Levels, 2025, ISBN 978-91-8118-019-0.

Linköping Studies in Arts and Sciences
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

No 677 Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.

No 695 Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

No 787 Sara Nygårdhs: Adaptive behaviour in traffic: An
individual road user perspective, 2020, ISBN 978-91-
7929-857-9.

No 811 Sam Thellman: Social Robots as Intentional Agents,
2021, ISBN, 978-91-7929-008-5.

No 878 Sofia Thunberg: Companion Robots for Older
Adults: A Mixed-Methods Approach to
Deployments in Care Homes 2024, ISBN, 978-91-
8075-573-3.

No 891 Kajsa Weibull: Emergency Vehicle Approaching:
Warning Drivers using Cooperative Intelligent
Transport Systems 2024, ISBN, 978-91-8075-804-8.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

No 11 Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

No 14 Måns Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

No 15 Per Sidén: Scalable Bayesian spatial analysis with
Gaussian Markov random fields, 2020, 978-91-7929-
818-0.

No 16 Caroline Svahn: Prediction Methods for High
Dimensional Data with Censored Covariates, 2022,
978-91-7929-398-7.

No 17 Héctor Rodriguez Déniz: Bayesian Models for
Spatiotemporal Data from Transportation Networks,
2023, 978-91-8075-035-6.

No 18 Amanda Olmin: Perspectives on Predictive and
Annotation Uncertainty in Probablistic Machine
Learning 2024, 978-91-8075-798-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-
utvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN 91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

Learning and Exploiting
Subgoal Structures
in Classical Planning
Towards Reliable and Transparent Intelligent Agents
that Learn to Plan on Multiple Levels

Linköping Studies in Science and Technology
Dissertation No. 2439

Dominik Drexler

Dom
inik Drexler 	

 Learning and Exploiting Subgoal Structures in Classical Planning 2025

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Dissertation No. 2439, 2025
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

	Populärvetenskaplig sammanfattning
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline
	1.2 Published Works

	2 Preliminaries
	2.1 Classical Planning
	2.2 Generalized Planning
	2.3 Planning Width
	2.4 Policy Sketches
	2.5 Description Logics
	2.6 Relational Structures and Graphs

	3 Expressing the Subgoal Structure
	3.1 Example Policy Sketch
	3.2 Experiments
	3.3 Discussion

	4 Learning Policy Sketches
	4.1 Method
	4.2 Experiments
	4.3 Analysis
	4.4 Discussion

	5 Learning Hierarchical Policies
	5.1 Characterization
	5.2 Method
	5.3 Experiments
	5.4 Discussion

	6 Abstractions
	6.1 Theoretical Framework
	6.2 Experiments
	6.3 Discussion

	7 Expressive Learning Requirements
	7.1 Method
	7.2 Experiments
	7.3 Discussion

	8 Lifted Planning With Expressive Extensions
	8.1 Expressive Language Extensions
	8.2 Experiments
	8.3 Discussion

	9 Conclusions
	Bibliography
	Papers

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20230419102833
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 614
 265
 None
 Right
 77.9528
 0.0000

 Both
 151
 AllDoc
 228

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 169
 168
 169

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 955
 353

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 460
 286

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

