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Abstract

State symmetries play an important role in planning and gen-
eralized planning. In the first case, state symmetries can be
used to reduce the size of the search; in the second, to re-
duce the size of the training set. In the case of general plan-
ning, however, it is also critical to distinguish non-symmetric
states, i.e., states that represent non-isomorphic relational
structures. However, while the language of first-order logic
distinguishes non-symmetric states, the languages and archi-
tectures used to represent and learn general policies do not.
In particular, recent approaches for learning general policies
use state features derived from description logics or learned
via graph neural networks (GNNs) that are known to be lim-
ited by the expressive power of C2, first-order logic with two
variables and counting. In this work, we address the problem
of detecting symmetries in planning and generalized planning
and use the results to assess the expressive requirements for
learning general policies over various planning domains. For
this, we map planning states to plain graphs, run off-the-shelf
algorithms to determine whether two states are isomorphic
with respect to the goal, and run coloring algorithms to de-
termine if C2 features computed logically or via GNNs dis-
tinguish non-isomorphic states. Symmetry detection results
in more effective learning, while the failure to detect non-
symmetries prevents general policies from being learned at
all in certain domains.

1 Introduction
Generalized planning is concerned with the problem of ob-
taining general action strategies for solving classes of in-
stances drawn from a common domain. A classical planning
domain ensures that all instances share a structure given by
a set of action schemas and predicates. These general strate-
gies, called also general plans or policies, are learned by
considering a small set of training instances from the tar-
get class Q (Srivastava, Immerman, and Zilberstein 2011;
Jiménez, Segovia-Aguas, and Jonsson 2019; Illanes and
McIlraith 2019; Toyer et al. 2020; Yang et al. 2022; Srivas-
tava 2022). General policies that solve the training instances
are then expected to generalize to Q. In the symbolic set-
ting, where the learning problem is formulated as a combi-
natorial optimization problem, this generalization can often
be established formally (Bonet, Francès, and Geffner 2019;
Francès, Bonet, and Geffner 2021). In the deep learning
setting, the algorithms scale up better but do not result in

policies that can be understood and proved to be correct
(Ståhlberg, Bonet, and Geffner 2022b; Ståhlberg, Bonet, and
Geffner 2023).

The computational bottleneck of the symbolic approach
is that it considers the complete state space of the training
instances, which becomes very large quickly. For example,
in the Gripper domain, where the task is to move balls from
one room to another, the state space contains more than 2n

reachable states when the number of balls is n. It turns out,
however, that many pairs of states in the training set are sym-
metric, meaning that a solution for one state implies a solu-
tion for the other. This suggests that the number of states for
the training set can be significantly reduced by considering
just one representative of each equivalent class of states.

Interestingly, state symmetries play a second important
role in generalized planning. Languages and neural archi-
tectures that lack the expressive power to distinguish pairs
of states that are not symmetric may fail to represent general
policies at all for certain domains. In particular, recent ap-
proaches for learning general policies that use state features
derived from description logics or learned via graph neu-
ral networks (GNNs) (Francès, Bonet, and Geffner 2021;
Ståhlberg, Bonet, and Geffner 2024) are known to be lim-
ited by the expressive power of C2, first-order logic with two
variables and counting (Barceló et al. 2020; Grohe 2021).

In this work, we address the problem of detecting sym-
metries in planning and generalized planning and use the
results for two different purposes: to assess the expressive
requirements for learning general policies over planning do-
mains, which requires distinguishing non-symmetric states,
and to speed up learning, which involves grouping sym-
metric states together. For detecting symmetries, we map
planning states to plain graphs, run off-the-shelf graph algo-
rithms to determine whether two states are isomorphic with
respect to the goal, and run coloring algorithms to determine
if C2 features computed logically or via GNNs distinguish
non-isomorphic states. The expressive requirements and the
performance gains are then evaluated experimentally.

The paper is organized as follows. After discussing re-
lated work, we review planning, generalized planning, and
relational structures and graphs. Then, we introduce faithful
and uniform abstractions, look at the notion of isomorphic
relational structures (states) and the computation of such ab-
stractions, carry out experiments, and draw conclusions.



2 Related Work
We discuss briefly three related research threads.

Symmetries. The detection of symmetries in planning
has been used to prune the search space (Shleyfman et
al. 2015), to define heuristic functions (Edelkamp 2001;
Haslum et al. 2007; Helmert et al. 2014; Nissim, Hoffmann,
and Helmert 2011), and to transform the problem repre-
sentation (Riddle et al. 2016). A common thread in these
approaches, which contrasts with our approach, is that ac-
tions are explicitly considered in the detection of symmetries
(Pochter, Zohar, and Rosenschein 2011; Sievers et al. 2019;
Sievers et al. 2017).

General policies. The problem of learning general poli-
cies has a long history (Khardon 1999; Martı́n and Geffner
2004; Fern, Yoon, and Givan 2006; Jiménez, Segovia-
Aguas, and Jonsson 2019). General, symbolic policies
have been formulated in terms of logic (Srivastava, Immer-
man, and Zilberstein 2011; Illanes and McIlraith 2019), re-
gression (Boutilier, Reiter, and Price 2001; Wang, Joshi,
and Khardon 2008; Sanner and Boutilier 2009), and pol-
icy rules (Francès, Bonet, and Geffner 2021; Drexler, Seipp,
and Geffner 2022; Yang et al. 2022; Srivastava 2023; Sil-
ver et al. 2024). General policies have also been learned
using deep learning methods (Toyer et al. 2020; Bajpai,
Garg, and others 2018; Rivlin, Hazan, and Karpas 2020;
Ståhlberg, Bonet, and Geffner 2022a), in many cases us-
ing graph neural networks or GNNs (Scarselli et al. 2009;
Gilmer et al. 2017; Hamilton 2020).

Expressivity. Interestingly, the expressive limitations of
symbolic methods relying on features derived from the
domain predicates via description logic grammars (Bonet,
Francès, and Geffner 2019; Francès, Bonet, and Geffner
2021) and methods relying on GNNs (Ståhlberg, Bonet,
and Geffner 2022b; Ståhlberg, Bonet, and Geffner 2023)
are similar. Such methods cannot distinguish states (i.e.,
relational structures) that cannot be distinguished by C2,
first-order logic with two variables and counting (Barceló
et al. 2020; Grohe 2021), or equivalently, by the Weisfeiler-
Leman (1-WL) coloring procedure (Cai, Fürer, and Immer-
man 1992; Morris et al. 2019; Xu et al. 2019). The conse-
quences of this limitation have been analyzed by Ståhlberg,
Bonet, and Geffner (2022a), and more recently by Horcı́k
and Sı́r (2024). We will come back to this work in the dis-
cussion section.

3 Background
We review basic notions of planning, generalized planning,
relational structures, and graphs.

3.1 Classical Planning
A planning problem is a pair P = 〈D, I〉 where D is a
general first-order domain containing a set of predicates
(or relations) R, each with given arity, and a set of action
schemas of the form 〈pre, eff 〉 where pre is an arbitrary
first-order formula and eff is an arbitrary effect, and I is
specific instance information that contains the set of objects

O, and two sets of ground atoms, Init and Goal , that de-
scribe the initial and goal situations, respectively. The prob-
lem P defines the state model S◦P = 〈S, sI , G,Act , A, f〉
where the states in S are the truth valuations over the ground
atoms, where each such valuation is represented by the set of
atoms true in the valuation, sI = Init is the initial state, and
G = {s ∈ S | Goal ⊆ s} is the set of goal states. The func-
tionAmaps states s into the setA(s) of ground actions from
Act that are applicable in s, and the state transition function
f maps states s and actions a ∈ A(s) into the resulting state
s′= f(s, a).

The unlabeled state model for the problem P is the tuple
SP = 〈S, sI , G,Succ〉 where the actions are compiled away,
and states have a set of possible successor states instead. In
this unlabeled model, the first three components are those
for S◦P , while Succ = {(s, f(s, a)) | a∈A(s)} is the (unla-
beled) successor relation.

A trajectory seeded at state s0 in P is a state sequence
s0, s1, . . . , sn such that (si, si+1) is in Succ, 0 ≤ i < n. A
state s is reachable in P if there is a trajectory seeded at the
initial state sI that ends in s. For a reachable state s, a plan
(resp. optimal plan) for s is a trajectory (resp. trajectory of
minimum length) seeded at s that ends in a goal state. The
length of an optimal plan for state s is denoted by V ∗(s),
and referred as the optimal cost of state s.

3.2 Generalized Planning
A generalized planning problem is a class Q of planning
problems P for a common domain D (Bonet and Geffner
2018). A general policy π for a class Q is a binary relation
on states. A state trajectory s0, s1, . . . , sn is a π-trajectory
seeded at state s0 if (si, si+1) is a transition that is in both
P and π, for 0 ≤ i < n. We say that: (1) π solves state s if
each maximal π-trajectory seeded at s reaches a goal state,
(2) π solves problem P if it solves the initial state of P , and
(3) π solves class Q if it solves each problem P in Q.

In generalized planning, goals are encoded as part of the
state as follows. For each atom p(ō) that appears in the goal
condition G, a new relational symbol pg of the same arity
of p is created. Then, the initial situation I is extended with
the atoms {pg(ō) | p(ō)∈G} which are static and thus re-
main in every reachable state (Martı́n and Geffner 2004).
Adding these “goal atoms” in the state allows general poli-
cies/sketches to take the specific goal of the instance into
account, so they may generalize not just to instances with
different numbers of objects and initial states, but also to
instances with different goals.

General policies are often represented in terms of state
features. A state feature φ for class Q is a function that
maps the reachable states s for the problems inQ into values
φ(s). The feature φ is Boolean if its values are Boolean
values, and numerical if its values are non-negative integers.
If Φ is a set of features, Φ(s) denotes the vector (φ(s))φ∈Φ.

3.3 States, Relational Structures, and Graphs
A (planning) state defines a relational structure As with
universe Us =O for the set of objects O in s, and in-
terpretations Rs⊆ (Us)k for each predicate R of arity k
in the planning domain D, where 〈o1, o2, . . . , ok〉 ∈Rs iff



R(o1, o2, . . . , ok) is true in s. The signature of a relational
structure A is the set of relational symbols in A. We as-
sume fully relational structures that contain no functions nor
constants (nullary functions). This type of structures are ad-
equate for planning problems described in PDDL.

While a planning state defines a relational structure, rela-
tional structures can be encoded by graphs, a mapping that
we will use to test state equivalence. Recall that a directed
graph, or graph, is a pair G = (V,E) where V is the set
of vertices and E ⊆ V 2 is the set of edges. An undi-
rected graph is a directed graph G where E is symmetric;
i.e., (v, w) ∈ E iff (w, v) ∈ E. Two graphs G = (V,E)
and G′ = (V ′, E′) are isomorphic, denoted by G 'g G′,
if there is a bijection f : V → V ′ such that (u, v)∈E iff
(f(u), f(v))∈E′.

A vertex-colored graph is a tuple G = (V,E, λ) where
(V,E) is a graph, and λ : V → C maps vertices to the
colors in C. Two vertex-colored graphs G = (V,E, λ) and
G′ = (V ′, E′, λ′) are isomorphic, denoted as G 'g G′,
iff there is a color preserving isomorphism f from G to G′,
i.e., λ(v) = λ′(f(v)) for v ∈ V . If the graphs G and G′ are
isomorphic via the bijection f , we write f : G→ G′.

4 Abstractions
We formalize first the abstraction induced by an equivalence
relation ∼:

Definition 1 (Abstraction). LetQ be a class of problems, let
∼ be an equivalence relation on the reachable states of the
problems in Q, and let P be a problem in Q with unlabeled
state model SP = 〈S, sI , G, Succ〉. The abstraction of P in-
duced by ∼, denoted by P/∼, is the unlabeled state model
S̃P = 〈S̃, [sI ], G̃, S̃ucc〉 where

1. S̃ .
= {[s] | s ∈ S} is the set of equivalence classes for P ,

2. [sI ] is the equivalence class for initial state sI of P ,

3. G̃ .
= {[s] | s ∈ G} is the set of goal classes, and

4. S̃ucc .= {([s], [s′]) | (s, s′) ∈ Succ}.

The abstraction Q/∼ is the class of abstractions S̃P for the
problems P in Q.

The successor relation in S̃P is the existential quantifica-
tion of the successor relation in SP where ([s], [s′]) ∈ S̃ucc
iff there is a transition (t, t′) in Succ such that s∼ t and
s′∼ t′. In particular, the transition (s, s′) may not exist
in P . Hence, generalized plans that solve the abstraction
S̃P do not necessarily solve P . In the following, we write
(s, s′)∼ (t, t′) to denote s∼ t and s′∼ t′.
Definition 2 (Faithful Abstractions). Let Q be a class of
problems, and let∼ be an equivalence relation on the reach-
able states in Q. The abstraction Q/∼ is faithful iff

1. for any P inQ, any reachable transition (s, s′) in P , and
any reachable state t in P with t∼ s, there is a transition
(t, t′) in P such that (s, s′)∼ (t, t′), and

2. if s∼ t for reachable states s and t in P , then s is a goal
state iff t is a goal state.

If the abstraction Q/∼ is faithful, the binary relation that
associates states s in Q with their equivalence classes [s]
in Q/∼ is a bisimulation between the corresponding unla-
beled transition systems (Sangiorgi 2012). Indeed,

Theorem 3 (Bisimulation). Let Q/∼ be a faithful abstrac-
tion, and let P be a problem in Q. Then, 1) if s0, s1, . . . , sn
is a trajectory in SP , then [s0], [s1], . . . , [sn] is a trajectory
in S̃P , and 2) if [s0], [s1], . . . , [sn] is a trajectory in S̃P , for
each s′0 in [s0], there is trajectory s′0, s

′
1, . . . , s

′
n in SP with

s′i∼ si for 0 ≤ i ≤ n.

Proof. The first claim is direct by the definition of S̃P . For
the second, notice that ([si], [si+1]) in S̃ucc implies there
is a transition (s′′i , s

′′
i+1) with (si, si+1)∼ (s′′i , s

′′
i+1), for

0≤ i<n. We construct the required trajectory in SP in-
ductively. By faithfulness, there is s′1 such that (s′0, s

′
1) is

in Succ and s′1∼ s′′1 . Hence, s′1∼ s1. After constructing
s′0, s

′
1, . . . , s

′
k, we have s′k ∼ sk. By faithfulness, there is

transition (s′k, s
′
k+1) with s′k+1∼ s′′k+1. Thus, s′k+1∼ sk+1,

and the trajectory can be extended with s′k+1.

Corollary 4. Let Q/∼ be a faithful abstraction, and let P
be a problem in Q. If s and t are reachable states in P with
s∼ t, then V ∗(s) = V ∗(t).

Faithfulness allows us to work with the abstraction, but it
does not take into account the form of the policy π. Namely,
it can be the case that a transition (s, s′) in P belongs to π
but not a transition (t, t′) with (t, t′)∼ (s, s′). This will not
happen, however, for the large class of uniform policies:

Definition 5 (Uniform Policies). Let Q/∼ be an abstrac-
tion, and let Π be a class of policies for Q. A policy π in
Π is uniform over Q/∼ iff for any problem P in Q, and
any pair (s, s′) of reachable states in P , if (t, t′) is a pair of
reachable states in P such that (s, s′)∼ (t, t′), then (s, s′)
is in π iff (t, t′) is in π. The class Π of policies is uniform
over Q/∼ if each policy π in Π is so.

A uniform policy π over a faithful abstractionQ/∼ gener-
ates well-defined trajectories [s0], [s1], [s2], . . . on the ab-
straction. Let us say that the transition ([s], [s′]) belongs to
π if (s, s′) belongs to π. By uniformity, if t and t′ are reach-
able states such that (s, s′)∼ (t, t′), then (t, t′) ∈ π. Hence,
we can lift the notions of solvability to define when a policy
π solves the abstraction Q/∼. We have

Theorem 6 (Solvability). LetQ/∼ be a faithful abstraction,
and let Π be a uniform class of policies for Q/∼. Then, for
any policy π in Π: π solves Q iff π solves Q/∼.

Proof. Let us assume that π solves Q, and suppose it does
not solveQ/∼. That is, there is a P inQwith initial state s0,
and maximal trajectory [s0], [s1], . . . , [sn] seeded at the ini-
tial class [s0] of S̃P that is not goal reaching. By Theorem 3,
there is a trajectory s′0, s

′
1, . . . , s

′
n in P such that s′i∼ si, for

0 ≤ i ≤ n. By faithfulness and uniformity, such a trajectory
is a maximal π-trajectory. On the other hand, the state s′n
cannot be a goal state since [sn] is not a goal state. Hence,
π cannot solve Q, which contradicts the assumption. The
other direction is shown similarly.



In the next section, we define an equivalence relation over
states that yields faithful abstractions and uniform policies,
and which thus benefits from Theorem 6.

5 Isomorphic Relational Structures (States)
As planning states are relational structures, it is natural to
deem two states as equivalent when their relational struc-
tures are isomorphic, defined as follows:

Definition 7 (Isomorphic Structures). Two relational struc-
tures A and B, over a common universe U and com-
mon signature (without constants), are isomorphic, writ-
ten as A'B, iff there is a permutation σ on U such
that for each relation R of arity k, RB = {σ(ū) | ū∈RA},
where σ(ū) for tuple ū= 〈u1, u2, . . . , uk〉 is the tuple
〈σ(u1), σ(u2), . . . , σ(uk)〉. We say that σ maps A into B,
and write σ : A→ B.

Isomorphic structures satisfy the same set of sentences
and the same set of formulas under suitable permutations.
The following is a standard result.

Lemma 8. Let A and B be two relational structures, and
let ϕ(x̄) be a first-order formula whose free variables are
among the ones in x̄. If σ : A → B, then for any tuple ū of
objects of the same length as x̄, A � ϕ(ū) iff B � ϕ(σ(ū)).
In particular, if ϕ is a sentence (i.e., it has no free variables),
A � ϕ iff B � ϕ.

In the STRIPS setting where classes Q consist of prob-
lems over a common domain, isomorphism-based equiva-
lence of states yields faithful abstractions:

Theorem 9 (Isomorphism-Based Equivalence). Let Q be a
class of STRIPS problems over domain D. If ∼iso is the
equivalence relation on the reachable states in Q such that
s∼iso t iff As'At, then Q/∼iso is a faithful abstraction.

Proof (sketch). Let P be a problem in Q, let (s, s′) be a
reachable transition in P , and let t be a reachable state in
P with t∼iso s. We need to show that there is a transition
(t, t′) in P with t′∼iso s′. By assumption, σ : As → At

for some permutation σ, and there is a ground action a(ō)
with s′= f(s, a(ō)). In particular, As � pre(ō) and thus, by
Lemma 8, At � pre(σ(ō)) (i.e. the ground action a(σ(ō))
is applicable in t). It is not hard to show that t′∼iso s′ for
t′= f(t, a(σ(ō))).

Finally, to show the second condition in Definition 2, let
P be a problem in Q. As the states in P are assumed to
contain the goal atoms for the problem, the sentence ϕg =∧
p ∀x̄

[
pg(x̄) → p(x̄)

]
, where the conjunction is over all

predicates p in D, pg is the goal predicate for p, and the size
of x̄ is the arity of p, determines whether a state s in P is a
goal state; i.e., s is a goal state iff As � ϕg . Hence, if s and
t are reachable states in P such that s∼iso t, then As � ϕg
iff At � ϕg; i.e., s is a goal state iff t is a goal state.

Example. Let us consider the Gripper domain, where the
goal is to move all balls from room A to room B with a robot.
The robot has two grippers, it can move between the rooms,
and it can pick and drop balls with any of the grippers. As

#A = n ,
#G = 0 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = A

#A = n− 2 ,
#G = 2 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 2 ,
L = B

#A = n− 1 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
L = A

#A = n− 2 ,
#G = 0 ,
L = A

pick

drop

pick

drop

move

move
movemove

droppick droppick

droppick

move

move

move
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Figure 1: Fragment of the state model S̃P for a Gripper instance
with n balls. Each equivalence class is identified by the number of
balls at room A (#A), the number of balls being held (#G), and
the position of the robot (L). For better understanding, we label
transition with the action schemas that induce them. The abstrac-
tion contains 6n abstract states (see text).

the goal is for all balls to be in room B, two states are equiv-
alent if both have the same number of balls in each room,
and the robot is in the same room in each state.

If P is an instance with n balls, the number of non-
isomorphic states is 6n = 2[(n+1)+n+(n−1)]: for each
of the two possible positions of the robot, there are n + 1
states with no ball being held, n states with one ball being
held, and n − 1 states with two balls being held. On the
other hand, the (plain) state space contains an exponential
number of states: when no ball is being held, for example,
each ball and the robot can be in either room, for a total
of 2n+1 states. Thus, abstractions for Gripper are exponen-
tially smaller. Figure 1 shows a fragment of the state model
S̃P for the abstraction of P , where each “abstract state” is
represented with the features Φ = {#A,#G,L} where #A
counts the number of balls in room A, #G counts the num-
ber of balls being held, and L is the position of the robot,
either A or B. The number of balls in room B is determined
by the features #A and #G.

The general policies π defined in terms of rules (Bonet,
Francès, and Geffner 2019), and GNNs (Ståhlberg, Bonet,
and Geffner 2022a) are uniform for the abstraction Q/∼iso,
and hence, π solves Q iff π solves Q/∼iso. To see this, let
us say that a policy π is function-based if there is a function
f that maps reachable states in Q into a domain Domf such
that to determine whether a state pair (s, s′) is in π, it is
sufficient to look at the pair of values (f(s), f(s′)). If the
function f is invariant under∼iso, any policy π that is based
on f is uniform for Q/∼iso. Likewise, policies that select
pairs (s, s′) by looking at the set {(f(s), f(s′′)) | (s, s′′) ∈
Succ}, like policies that choose pairs (s, s′) that greedily
minimize the value f(s′) over successor states s′, are also
uniform for Q/∼iso if f is invariant. Hence, we say that
π is an invariant function-based policy if π is based on a



function f that is invariant under ∼iso. For such policies,
Theorem 6 implies:

Theorem 10 (Main). LetQ be a class of STRIPS problems,
and let π be an invariant function-based policy forQ. Then,
π solves Q iff π solves Q/∼iso.

Proof. Direct from Theorem 6 as Q/∼iso is a faithful ab-
straction, by Theorem 9, and π is uniform for Q/∼iso.

6 Computing The Abstraction
Checking ∼iso on two reachable states can be reduced to
a graph-isomorphism test on vertex-colored graphs. These
graphs, that we call object graphs, encode relational struc-
tures as vertex-colored undirected graphs. On the theoretical
side, the exact complexity of graph isomorphism is still un-
known, but it can be tested in quasi-polynomial time (Babai
2016). However, in practice, the test can be performed
efficiently (McKay and Piperno 2014); see discussion in
Babai (2016, page 83). Indeed, we use nauty (McKay and
Piperno 2014) to compute canonical representations (i.e.
isomorphism-invariant representations) of graphs, that we
apply to the object graphs associated with states. nauty is
a state-of-the-art tool that applies Color Refinement, recur-
sively, using a technique called vertex individualization.

Definition 11 (Object Graphs). Let A be a relational struc-
ture with universe U , and relational symbols Ri, each of
arity ki, 0 ≤ i < n. The object graph for A is the vertex-
colored undirected graph G(A) = (V,E, λ) where the set
V of vertices consists of

1. vertices v= 〈u〉 with color λ(v) =⊥ for u∈U , and
2. vertices v= 〈Ri, j, ū〉 with color λ(v) = 〈Ri, j〉 for each

relation Ri, 1 ≤ j ≤ ki, and tuple ū∈ (Ri)
A.

The set of edges E consists of

1. edges connecting the vertices 〈uj〉 and 〈Ri, j, ū〉 if ū =
〈u1, u2, . . . , uki〉, and

2. edges connecting the vertices 〈Ri, j, ū〉 and 〈Ri, j+1, ū〉
for 1 ≤ j < ki.

The object graph G(s) for a planning state s is the object
graph G(As) of its relational structure.

The vertices of the form 〈u〉 are called object vertices, and
vertices of the form 〈R, j, ū〉 are called positional-argument
vertices. The first type of edge connects object vertices to
corresponding positional-argument vertices, while the sec-
ond connects successive positional-argument vertices.

Example. Figure 2 shows the object graph G(s) for a state
s of Gripper where there is a single ball, the robot is at room
B, and the ball is being held. This graph is isomorphic to
G(t) where the state t is like s, except that the other gripper
holds the ball.

The mapping from relation structures (states) into object
graphs preserves all the information in the structures:

Theorem 12 (Reductions). Let A and B be two relational
structures over a common universe U and signature (with
no constant symbols). Then, A ' B iff G(A) 'g G(B).

〈gripper , 1, 〈L〉〉 〈gripper , 1, 〈R〉〉 〈ball , 1, 〈b〉〉

〈L〉 〈R〉 〈b〉

〈atg, 1, 〈b,B〉〉〈carry , 1, 〈b,R〉〉〈carry , 2, 〈b,R〉〉

〈atg, 2, 〈b,B〉〉〈room, 1, 〈B〉〉〈at-robot , 1, 〈B〉〉〈room, 1, 〈A〉〉

〈A〉 〈B〉

Figure 2: Object graph G(s) for a state s in a Gripper instance with
grippers L and R, one ball b, and two rooms A and B. In the state
s, the robot is at B, the ball is at gripper R, and the goal is for the
ball to be in room B. The state specifies the goal using the goal
predicate atg . This graph is isomorphic to the graph G(t) for a
state t that is like s except that the ball is at gripper L.

Proof (sketch). First assume A'B with σ :A→B. We
construct a color-preserving isomorphism f from G(A) to
G(B): for object vertices, f(〈u〉) .

= 〈σ(u)〉, while for
positional-argument vertices, f(〈R, j, ū〉) .

= 〈R, j, σ(ū)〉. It
can be seen that f is an edge-preserving bijection between
the vertices of both graphs. Additionally, λ(〈u〉) = ⊥ =
λ(〈σ(u)〉), and λ(〈R, j, ū〉) = 〈R, j〉 = λ(〈R, j, σ(ū)〉).
Hence, f is a color-preserving isomorphism.

For the converse, let us assume that f is a color-preserving
isomorphism from G(A) to G(B). Consider the function
σ : U→U defined by σ(u) =u′ iff f(〈u〉) = 〈u′〉. As no
object vertex has the color of a positional-argument vertex,
σ is a U -permutation. We need to show σ : A→ B; i.e., for
each relation R,

RB = {σ(ū) | ū ∈ RA} . (1)

The set of vertices related to the tuple ū in RA is
V (A, ū) = {〈ui〉 | ui ∈ ū} ∪ {〈R, j, ū〉 | 1 ≤ j ≤ k}. This
set induces the subgraph G(A, ū) of G(A). It is not hard to
see that (1) holds iff the subgraphsG(A, ū) andG(B, σ(ū)),
for all tuples ū ∈ RA, are isomorphic through the (restric-
tion of) f . As this is the case, (1) holds, and A ' B.

By Theorem 12, we can use nauty to identify equivalent
states. Other state encodings have been proposed that are
not aimed at testing structural equivalence but at using stan-
dard GNN libraries (Ståhlberg, Bonet, and Geffner 2022a;
Chen, Trevizan, and Thiébaux 2023). While the theoreti-
cal relationship between GNNs and first-order logics with
counting quantifiers Ck is known (Grohe 2021), the rela-
tion between logical entailment of such logics over relational
structures (i.e., states) and their different encodings (e.g., ob-
ject graphs) is not clear.

7 Abstractions and Domain Expressivity
Function-based policies, as defined above, such as those
captured by GNNs, do not distinguish isomorphic states. On
the other hand, such policies often need to distinguish non-
isomorphic states as they may require different actions.

We focus on two key aspects: whether a pair of non-
isomorphic states (s, s′) can be distinguished with GNNs,
and whether a pair of states (s, s′) with different V ∗-value



can be distinguished with GNNs. Such pairs that cannot be
distinguished by any GNN are called conflict pairs. If a
training set contains conflict pairs of the first type and s is
a goal state and s′ is not, then no GNN will be able to dis-
tinguish goal states from non-goal states. If the conflict is of
the second type, no GNN will learn a representation of V ∗,
even in the training set.

We use the known relations between the counting logics
Ck and Weisfeiler-Leman coloring algorithms (Cai, Fürer,
and Immerman 1992), and the latter and GNNs (Morris et
al. 2019; Xu et al. 2019; Barceló et al. 2020; Grohe 2021),
to establish whether a domain contains conflict pairs. More
precisely, we use the 1-WL and 2-FWL coloring algorithms
over to the object graph G(s) associated with relational
structures (states) s.

It is known that if s and s′ are two states whose object
graphs cannot be distinguished by 1-WL, they will not be
distinguished either by formulas in the logic C2 (first-order
logic with counting quantifiers and two variables), or by the
embeddings produced by a GNN. And if the graphs for s and
s′ cannot be distinguished by 2-FWL, they cannot be distin-
guished by formulas in the logic C3 or by the embeddings
produced by 3-GNNs.

Graphs are compared in terms of their histograms of col-
ors, denoted by Histk(·) with k = 1 for 1-WL, and k > 1
for k-FWL, where such histogram is just the multiset of col-
ors for the vertices in the graph. Namely, two states s and s′

are distinguished if Histk(G) 6= Histk(G′), whereG=G(s)
and G′=G(s′) are the corresponding object graphs.

In the experiments, we obtain the histograms by running
1-WL and 2-FWL over the object graphs for hundreds of
training instances of different planning domains. Let D be
a STRIPS planning domain, and let Q be a collection of
instances P over D. If S denotes the set of reachable states
across the instances inQ, we want to check whether there is
a pair of states (s, s′) in S that is in conflict with respect to
a coloring algorithm. Formally,

Definition 13 (Conflicts). Let S be a set of reachable states
for instances over a common domain, where the states are
assumed to contain goal atoms. Further, let us consider
a coloring algorithm ×, such as 1-WL (color refinement),
that operates on the object graphs G(s), and let (s, s′) be a
pair of states in S that have the same color histogram; i.e.,
Hist×(s) =Hist×(s′). Then,

1. (s, s′) is an E-conflict if s 6∼iso s′, and
2. (s, s′) is a V-conflict if V ∗(s) 6= V ∗(s′).

We say that S has no conflicts of some type iff there is no
pair (s, s′) in S that is a conflict of such type.

Conflicts of the first type imply that GNNs cannot distin-
guish some pairs of non-isomorphic states, while conflicts of
the second type imply that GNNs cannot distinguish some
pairs of states that have different costs. The proof of the
following theorem follows directly from the known corre-
spondences between 1-WL and GNNs:

Theorem 14 (GNN-based Representation of V ∗). Let Q be
a finite class of problems over a common domain D (where

states encode goals with goal atoms), and let S be the set of
reachable states in Q. Then,
1. S has no E-conflicts of type 1-WL iff there is a GNN that

identifies the states [s] in the abstraction Q/∼iso, and
2. S has no V-conflicts of type 1-WL iff there is a GNN that

represents the value function V ∗(s) over S.

8 Experiments: Domain Expressivity
Experiments are carried out to evaluate the expressivity re-
quirement of various planning domains by looking for E-
and V-conflicts. Testing for the equivalence relation ∼iso
is implemented in Python using the planning library Mimir
(Ståhlberg 2023) and nauty, while for computing color his-
tograms we implemented 1-WL and 2-FWL (Drexler et al.
2024). The benchmark set consists of domain and instances
from the International Planning Competition (IPC). Code
and data are available online (Drexler et al. 2024).

Conflicts are calculated with respect to 1-WL and 2-
FWL, and also versions of these algorithms in which mul-
tisets are replaced by standard sets.1 This modification
is important because the description logic grammar that
is used to generate state features from the planning do-
main does not use counting quantifiers, and also because
some GNN-based approaches use max-aggregation rather
than sum-aggregation (Ståhlberg, Bonet, and Geffner 2022a;
Ståhlberg, Bonet, and Geffner 2022b; Ståhlberg, Bonet, and
Geffner 2023).

Table 1 shows the number of E- and V-conflicts among
the reachable states in the benchmark. The table shows,
for each domain, the number of instances and their reach-
able states (#Q and #S), the number of equivalence classes
(#S/∼iso), and the number of E- and V-conflicts (#E and
#V , respectively) for 1-WL and 2-FWL, and for the two
versions of the algorithms (multisets and standard sets).

We also tried a slightly different graph encoding to over-
come some of the limitations of object graphs in relation
to the coloring algorithms. In this encoding, goals are rep-
resented using two predicates, pg,T and pg,F , rather than a
single predicate pg , that tell whether the goal atom is true
or false in the state. This encoding, called goal marking, is
beneficial in all domains that have conflicts, highlighted in
green in the columns “1-WL + G” and “2-FWL + G” in Ta-
ble 1. In Blocks, for example, #V drops to 0, while in Ferry,
it resolves all conflicts.

The existence of V-conflicts are important when learning
a representation of V ∗, but E-conflicts give a more general
view on the expressivity requirements since V-conflicts are
E-conflicts and E-conflicts imply the existence of qualita-
tively different states that cannot be differentiated. As can
be observed on Table 1, and by Theorem 14:
• 1-WL (and hence GNNs) has sufficient expressive power

in 11 domains (61%), where there are no conflicts at all.
• In 12 (resp. 14) domains, 1-WL has sufficient expressive

power to separate non-isomorphic states (resp. represent
V ∗) when using goal marking.

1Coloring algorithms work with multisets, rather than sets, as
multisets provide a means to do restricted forms of counting.



Multisets Standard sets

1-WL 2-FWL 1-WL + G 2-FWL + G 1-WL 2-FWL 1-WL + G 2-FWL + G

Domain #Q #S #S/∼iso #E #V #E #V #E #V #E #V #E #V #E #V #E #V #E #V

Barman 510 115 M 38 M 1,326 537 0 0 1,062 273 0 0 1,326 537 0 0 1,062 273 0 0
Blocks3ops 600 146 K 133 K 50 20 0 0 25 0 0 0 50 20 0 0 25 0 0 0
Blocks4ops 600 122 K 110 K 54 27 0 0 27 0 0 0 54 27 0 0 27 0 0 0
Blocks4ops-clear 120 31 K 3 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Blocks4ops-on 150 31 K 8 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Childsnack 30 58 K 5 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Delivery 540 412 K 62 K 0 0 0 0 0 0 0 0 152 0 0 0 152 0 0 0
Ferry 180 8 K 4 K 36 36 0 0 0 0 0 0 84 84 0 0 0 0 0 0
Grid 1,799 438 K 370 K 42 38 0 0 24 20 0 0 84 80 0 0 44 40 0 0
Gripper 5 1 K 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hiking 720 44 M 5 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Logistics 720 69 K 38 K 131 131 0 0 94 94 0 0 131 131 0 0 94 94 0 0
Miconic 360 32 K 22 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reward 240 14 K 11 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rovers 514 39 M 34 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Satellite 960 14 M 8 M 5,304 4,226 0 0 1,708 762 0 0 12,908 9,906 0 0 4,372 982 0 0
Spanner 270 9 K 4 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Visitall 660 3 M 2 M 0 0 0 0 0 0 0 0 27 0 0 0 27 0 0 0

Table 1: The column #Q is the number of instances used in our experiments. The columns denoted #S and #S/∼iso refer to the the total
number of states and the total number of partitions in the expanded reachable state spaces. The left part uses a multiset, while the right part
uses sets. The suffix ”G” indicates that goal atoms are marked as true if they hold true in the state. The number of conflicts that are caused
by 1-WL and 2-FWL where the #E column refers to the total number of conflicts, while the #V column refers to the number of conflicts in
which the two classes differ in V∗.

• In some domains, 1-WL is not expressive enough even
with goal marking; this includes the domains Barman,
Grid, Logistics, and Satellite.

• Most important, 2-FWL, that has the expressive power of
C3, appears to be sufficiently expressive in all domains.

The table also shows that reducing expressiveness by us-
ing sets instead of multisets does not reduce the expressive
power needed in most domains. Indeed, the modified 1-WL
algorithm with sets creates E-conflicts in Delivery and Vis-
itall (highlighted in orange), but no V-conflicts where they
were none. Indeed, it just increases the number of conflicts
in Ferry, Grid, and Satellite which was not zero with multi-
sets.

Ståhlberg, Bonet, and Geffner (2023) noted that Logis-
tics requires C3 features to learn a value function, and sim-
ilarly for Grid (Ståhlberg, Bonet, and Geffner 2024). The
experiments corroborate these claims, as 1-WL found con-
flicts in these domains. However, Ståhlberg, Bonet, and
Geffner (2022a) claim that Rovers requires C3 features, but
no conflicts are identified. This finding does not disprove the
claim because Rovers contains an important ternary pred-
icate, CAN-TRAVERSE; rather, it likely suggests that our
training set is not sufficiently rich.

Barman, Ferry, and Satellite, as far as we know, have not
been previously analyzed in this context. The conflicts in
Blocks have been studied by Horcı́k and Sı́r (2024), where
they show that if the goal has a specific structure, then C2

cannot determine if it is true in a state. Logistics has been
investigated by Ståhlberg, Bonet, and Geffner (2023), where
they used derived predicates to ensure C2 is sufficient to ex-
press a policy. The results suggest that the expressiveness of
1-WL is insufficient for learning a value function. We now

study these domains and the conflicts we have identified.

Barman. The objective is to mix cocktails that require ex-
actly 2 ingredients. To create the cocktails, the bartender
can fill shot glasses with specific ingredients, pour the shot
glasses into a shaker, mix the ingredients with the shaker,
and clean the shot glasses and the shaker. A typical plan
for creating a cocktail involves pouring the first ingredient
into a shot glass, transferring it to the shaker, cleaning the
shot glass, pouring the second ingredient into it, then into
the shaker, cleaning the shot glass again, shaking the shaker,
and finally pouring the cocktail into a shot glass. Figure 3
illustrates two states with different V ∗ values that cannot
be distinguished by 1-WL. There are two different cocktail
recipes, c1 requiring ingredients i1 and i3, and c2 requiring
ingredients i1 and i2. The goal is to fill shot glass s1 with
c1 and shot glass s2 with c2. In both states, the shaker is
on the table, and both shots are being held. The distinction
lies in the contents of the shot glasses. In the first state, shot
glass s1 contains i3 and shot glass s2 contains i2, while in
the second state, shot glass s1 contains i2 and shot glass s2

contains i3. In other words, the contents of the shot glasses
have been swapped. However, the goal specifies that shot
glass s1 must precisely contain cocktail c1, so the optimal
plan for the second state is first to pour out the contents of
s1 and then clean it, as it contains the wrong ingredient, steps
that are unnecessary for the first state.

Blocks. The goal is to arrange all the blocks into a specific
configuration by stacking and unstacking them. There are
two versions of this domain, one with three action schemas
and the other with four action schemas. Remarkably, GNNs
have been successfully trained for this domain and exhibit
good generalization (Ståhlberg, Bonet, and Geffner 2022b;



Shot s1 Shot s2

i1
+
i3

i2
+
i3

Shot s1 Shot s2

i3 i2

Shot s1 Shot s2

i2 i3≡

Goal V ∗ = 23 V ∗ = 26

Figure 3: Example of two Barman states with different V ∗ value
from the same instance that are considered isomorphic by 1-WL
with respect to the goal. The left (resp. right) one in being held in
the left (resp. right) hand, and the shaker (omitted) is on the table.
The goal is to have cocktail c1 in shot glass s1 and c2 in s2. The
only difference in both states is that the ingredients in both shots
are swapped. However, in the state on the right, the ingredient i2 in
s1 is wrong and must be removed, resulting in different V ∗ values.

3 4
2 1

3 4
2 1

3 4
1 2≡

Goal V ∗ = 0 V ∗ = 3

Figure 4: Example of two Blocks states that are considered isomor-
phic by 1-WL with respect to the goal. In the object graphs, 1-WL
cannot determine whether the goal holds.

Ståhlberg, Bonet, and Geffner 2023). However, our results,
along with those of others (Horcı́k and Sı́r 2024), suggest
that GNNs might lack the necessary expressiveness for this
domain. Figure 4 illustrates two states and a goal description
that cannot be distinguished by 1-WL. In this figure, the two
states have distinct values: one is a goal state, and the other
is not. The object graph for the state on the left contains
two connected components, each forming a 6-gon, and the
object graph for the state on the right contains one connected
component, forming a 12-gon. These two structures cannot
be distinguished by 1-WL.

Ferry. There is only one ferry, capable of carrying a sin-
gle car. The cars can both board and disembark from the
ferry, and the ferry can sail between locations. The goal is to
transport cars to their respective destinations, as denoted by
a binary predicate. The simplest states where 1-WL fails to
differentiate are those where the two cars must be in differ-
ent locations. One state has both cars at their destinations,
while the other has their locations swapped. Consequently,
their values differ, with one being a goal state and the other
not. By marking goal atoms as true or false, these two states
can be distinguished.

Grid. In this domain, an agent needs to move keys to spe-
cific cells by picking them up and placing them down. How-
ever, there are locked doors, and the cells might be posi-
tioned behind one. Each locked door can only be opened
by keys with the corresponding shape, i.e., both locks and
keys have shapes associated with them. An example illus-
trating when 1-WL is insufficient for distinguishing non-
isomorphic states is shown in Figure 5. In these states, the
positions of two keys have been swapped, resulting in dif-
ferent V ∗ values. However, 1-WL cannot determine which
key should be placed in which location.

Logistics. This domain involves cities, trucks, airplanes,
and packages. In each city, there are several locations where

k1k2 a ≡

V ∗ = 10

k1 k2a

V ∗ = 12

Figure 5: An example of two Grid states that are considered iso-
morphic by the 1-WL algorithm with respect to the goal. The goal
is to move the keys k1 and k2 to specific cells, as the arrows indi-
cate. All keys and locks have the same shape. The agent a is in the
center of the grid. In the left state, 10 actions are needed to solve
the instance, while 12 actions are needed in the right state.

trucks can move between, as well as pick up and deliver
packages. There is also an airport in each city, from which
airplanes can load and unload packages. The goal is to de-
liver each package to a specific location within some city.
A plan for a single package typically involves a truck that
picks it up and unloads it at the airport, then an airplane is
used to move it to the correct city, after which a truck is
used to deliver it to the destination. Two states with differ-
ent V ∗ values that 1-WL cannot discriminate are as follows:
There are two cities, c1 and c2, each consisting of a single
location, which we refer to using the city name. There is a
single truck in each location, t1 at c1 and t2 at c2. There
are also two airplanes, a1 at c1 and a2 at c2. The goal is to
deliver two packages, p1 to c1 and p2 to c2. In one state, p1

is inside t1 and p2 is inside t2, while in the other state, p1 is
inside t2 and p2 is inside t1. The V ∗ value of the first state is
2 as the trucks have to unload the packages, while the value
is 8 in the second state as they need to be transported to the
other city. Here, 1-WL is unable to determine whether the
correct packages are inside the trucks.

Satellite. In this domain, there are satellites equipped with
instruments to capture specific images. Each satellite can
calibrate the equipment to various targets, but not necessar-
ily to all possible targets. The typical goal is to capture im-
ages of various phenomena using specific instruments. We
found states with different values that are identified as iso-
morphic by 1-WL. One example is an instance where the
goal is to capture a spectrograph image of a phenomenon,
and there are two satellites capable of capturing such an im-
age. However, only one satellite can calibrate the instrument
to the phenomenon; thus, said satellite has to capture the im-
age. The only difference between the two states is that, in
the first state, one satellite is pointing to the ground station
and the other is pointing to a star related to the phenomenon,
whereas in the second state, their orientations have been
swapped. This means that in one state, one satellite must
first turn to the star to calibrate the instrument. However,
1-WL is unable to determine whether the correct satellite
points to the star – only that one satellite does.

9 Experiments: Learning on Abstractions
The next set of experiments evaluates the impact of replac-
ing the states in the training set when learning general poli-



x without equivalence-based reduction xx with equivalence-based reduction

Domain M Tpre Tlearn #QT M Tpre Tlearn Speedup #QT /∼iso Factor

Blocks3ops 9 103 28,781 145,680 11 213 11,020 2.65 4,901 29.72
Blocks4ops-clear 1 3 5 30,540 1 3 3 1.33 86 355.12
Blocks4ops-on 3 30 177 30,540 2 33 195 0.47 249 122.65
Delivery 3 107 427 411,720 2 65 260 1.64 3,346 123.05
Ferry 1 13 56 8,430 1 19 72 0.76 265 31.81
Gripper 1 2 3 1,084 1 2 4 0.83 90 12.04
Miconic 1 8 30 32,400 1 14 44 0.66 12,339 2.63
Reward 1 5 15 13,394 1 6 8 1.43 7,026 1.91
Spanner 1 3 4 9,291 1 4 4 0.88 283 32.83
Visitall 2 22 55 476,766 3 36 59 0.98 402,880 1.18

Table 2: Learning general policies with and without equivalence-based reductions. The table shows the memory in GiB (M), the wall-clock
times in seconds for preprocessing (Tpre), the time in seconds for grounding, solving the ASPs, and validation (Tlearn), the total number of
states in the training set (#QT ), and the reduced training set (#QT /∼iso), and ratios for the speedup in time and number of states for the
reduced training set. Boldface figures denote the winner in the pairwise comparison, i.e., the one with strictly fewer resources needed.

cies with symbolic methods (Drexler, Seipp, and Geffner
2022) with their abstractions. For both training sets, the
learned policies are aimed to generalize to a much larger
(infinite) class of instances. The impact on performance for
symbolic learning mainly results from reducing in the num-
ber of states, although some extra preprocessing is needed
to implement the reduction, which, for the easiest cases, in-
creases overall times. IfQT denotes the set of states used for
training, thenQT /∼iso denotes the reduced set of states ob-
tained in the equivalence-based abstraction where every pair
of isomorphic states in QT are mapped to the same abstract
state.

Learning is done on two Intel Xeon Gold 6130 CPUs
with 32 cores, 96 GiB of memory, and a time budget of 24
hours. Since the reductions are significant, we use train-
ing instances with up to 10,000 states instead of the 2,000
used by Drexler, Seipp, and Geffner (2022), and we tested
generalization of the learned policies on significantly larger
instances.

Table 2 shows a summary of the times required for prepro-
cessing (that includes the tests for ∼iso) and the learning of
the general policies. The sizes of the plain and reduced train-
ing sets, #QT and #QT /∼iso respectively, are shown, as
well as the reduction factors with respect to time (Speedup)
and the number of states (Factor). Notice that there is only
a single state inQT /∼iso for every equivalence class across
all instances. As it can be seen, the total overhead incurred
by testing ∼iso (i.e., the difference between the two figures
for Tpre) is small.

Policy learning is done iteratively by solving a Clingo pro-
gram (ASP) over a subset of the training set that is grown at
each iteration until the resulting policy correctly solves (i.e.,
verifies) all the instances in the training set. Table 2 shows
that the learning time increases for the easiest cases due
to the overhead but reduces for the most difficult domains,
Blocks3ops and Delivery. Our policy learning code is not
optimized as it is implemented on top of the code for learn-
ing sketches (Drexler, Seipp, and Geffner 2022), a task that
requires further bookkeeping. We expect better speedups
by using specific code only for policy learning because they

do not require computing the complete abstraction mapping
and, therefore, can better exploit the reduction in abstract
states.

10 Discussion
In recent work, developed independently, Horcı́k and Sı́r
(2024) analyze the expressive power of a number of GNN
architectures over a number of planning domains. For this,
they map state pairs s and s′ from a domain instance into
graphs, and run GNNs with random weights to compute
scalars g(s) and g(s′).2 The equality g(s) = g(s′) is a
strong indication that the GNNs cannot distinguish s from
s’, and if the actual costs V ∗(s) and V ∗(s′) are different, the
pair (s, s′) is marked as a conflict; an indication that GNNs
lack expressive power to capture V ∗ in the domain. In our
case, rather than using GNNs with random weights, we run
1-WL, and rather than using different types of graphs, we
use a map from states (relational structures) to graphs that
is invariant under state isomorphism. In addition, we see if
1-WL distinguishes non-isomorphic pairs of states and not
just states with different V ∗ values. This is important be-
cause E-conflicts (s, s′), as we call them, may become V-
conflicts when the goals encoded in s and s′ change. Yet,
while results over the various domains are quite different,
the reasons for these differences may be elsewhere. Horcı́k
and Sı́r (2024) consider large training instances but sample
the state pairs that are considered; we consider small train-
ing instances and consider all possible state pairs. The re-
sult is that we observe conflicts in domains such as Barman,
Blocks, Logistics, and Satellite, but not in Rovers, while
they observe conflicts in Rovers but not in the first four do-
mains.

While the presence of V-conflicts in a domain is a strong
indication that GNNs will not be able to represent the op-
timal value function, even over the training instances, the
lack of V-conflicts does not ensure that the GNNs will rep-

2Other mappings from states into graphs are considered by
Chen, Trevizan, and Thiébaux (2023) and Chen, Thiébaux, and
Trevizan (2023).



resent the optimal value function or suitable approximation
of it over the test set (as in Rovers). Also, GNNs may fail to
represent V ∗ over the training set and yet accommodate non-
optimal policies. Likewise, in certain cases, this limitation
can be addressed by using slightly different state encodings,
as shown in the case of Blocks and Ferry where goal and
state predicates pg and p are composed. Other ways for ex-
tending the state representations are addressed by Ståhlberg,
Bonet, and Geffner (2024).

11 Conclusions
State symmetries play two key roles in generalized plan-
ning. On the one hand, symmetric states can be pruned,
speeding up the learning process with no information loss.
On the other hand, non-symmetric states need to be distin-
guished by the languages and neural architectures used to
represent and learn value functions and policies. Indeed,
languages and architectures that lack the expressive power
to make these distinctions may fail to accommodate gen-
eral policies for certain planning domains at all. These two
roles of symmetries and non-symmetries have been studied
through a number of experiments that illustrate the expres-
sive power required by some common planning domains and
the performance gains obtained in the symbolic setting for
learning general policies. In the future, we want to explore
how these results can be sharpened and made more broadly
useful by learning general policies for domains that remain
out of reach for current techniques.
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Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2017.
Structural symmetries of the lifted representation of classical
planning tasks. In ICAPS 2017 Workshop on Heuristics and
Search for Domain-independent Planning, 67–74.
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