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Generalized Planning: Motivating Example

class of problems Qlaundry-40

. . .

class of problems Qwater-plants

. . .

class of problems Qclean-floor

. . . . . .

Figure 1: A robot facing several classes of problems. Images in this presentation created with Dall-E.
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Formulation: Generalized Classical Planning

• Given: Class of problems Q consisting of structurally similar classical planning problems
(over common first-order planning domain):

• Identical relation symbols (to describe the world) and action schemas (to act in the world)
• Different sets of objects, initial situation, or goal situation

A B C
. . .

move( , A, B)

(a) Problem 1 - initial situation: at( ,A), at( ,C), . . .

A B

C D

(b) Problem 2

• Finding a plan for a single problem P ∈ Q from scratch is computationally challenging
→We want to learn from experience to make planning efficient

• Objective: Find a general plan A that efficiently (polynomial time) solves any problem P ∈ Q

• General policies describe what action to take in a given situation (state) to reach goal in P ∈ Q
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General Policies

• A general policy π picks state transitions (s, s′) in each P ∈ Q

• A general policy π solves P if all π-trajectories starting at s0 end in goal state

• A general policy π solves Q if it solves all P in Q

• A general policy sees states through features over some feature language L

• Feature language L cannot refer to objects by names

• E.g., feature as first-order logic sentence: H ≡ ∃x .holding(x)
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In a Nutshell

• Others and us have been looking at two methods for learning general policies
• Combinatorial: explicit pool of features, Weighted-Min-SAT formulation

[Khardon, 1999, Martín and Geffner, 2004, Fern et al., 2006, Srivastava et al., 2008,
Jiménez et al., 2019, Francès et al., 2021]

• Deep learning: features learned to represent value or policy functions via DRL
[Toyer et al., 2020, Bajpai et al., 2018, Rivlin et al., 2020, Ståhlberg et al., 2023]

• Two main issues:
• Scalability, in combinatorial setting
• Expressivity, in both

• Aims of this work:
• Exploit state symmetries (isomorphisms) for reducing # of states in training
• Use symmetries to evaluate the expressive requirements of planning domains
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Motivation: State Symmetry Reduction

A B

C D

(a) State s1

A B

C D

(b) State s2: isomorphic to s1

A B

C D

(c) State s3: non-isomorphic

Figure 3: Two isomorphic states and one non-isomorphic state from problems of doing the laundry.
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Equivalence-based Abstractions

• Planning states are relational structures

• Two states s, s′ are isomorphic s∼iso s′ iff their relational structures are isomorphic
→ Isomorphism is a bijective relationship preserving mapping between objects from s to s′

→ Isomorphic states represent the same problem aspect

• Reduced problems Q̃ contains one representative state from each class of isomorphic states

• Theorem: a general policy π solves Q iff π solves the reduced problems Q̃.
Detail: requires isomorphism-invariant feature language to work with representative state
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How State Symmetries are Computed?

• States s mapped into undirected vertex-colored graphs G(s)

• Relation symbols can have arbitrary arity

• Theorem: s∼iso s′ iff G(s)∼iso G(s′)

• We use state-of-the-art code (nauty) to determine if graphs G(s) and G(s′) are isomorphic

〈gripper , 1, 〈L〉〉 〈gripper , 1, 〈R〉〉 〈ball, 1, 〈b〉〉

〈L〉 〈R〉 〈b〉

〈atg , 1, 〈b,B〉〉〈carry , 1, 〈b,R〉〉〈carry , 2, 〈b,R〉〉

〈atg , 2, 〈b,B〉〉〈room, 1, 〈B〉〉〈at-robot , 1, 〈B〉〉〈room, 1, 〈A〉〉

〈A〉 〈B〉

Figure 4: Graphs G(s) for a state in a problem from the Gripper domain.
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Experimental Results: Learning General Policies

Domain Learning time (sec) Learning speedup Data reduction

Blocks3ops 11,233 2.65 29.72
Blocks4ops-clear 6 1.33 355.12
Blocks4ops-on 228 0.47 122.65
Delivery 325 1.64 123.05
Ferry 91 0.76 31.81
Gripper 6 0.83 12.04
Miconic 58 0.66 2.63
Reward 14 1.43 1.91
Spanner 8 0.88 32.83
Visitall 95 0.98 1.18

Table 1: Learning general policies with equivalence-based reductions.
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Assessing Expressivity Requirements

• We can introduce a small twist to our pipeline to analyze the expressive requirements of feature
languages on training sets from each planning domain

• Commonly used feature languages are description logics (combinatorial), GNNs (deep learning)

• Expressivity measured by the ability in distinguishing non-isomorphic states

• Failure to distinguish those states (= conflict) can result in failure to learn general policy
→ It might not be possible to assign different behaviors

• Straightforward method to assess expressivity requirements:
• Run 1-WL on all representative (non-isomorphic) states of training set to find conflicts
• No conflict implies sufficient expressiveness of C2, GNNs, and description logics

[Cai et al., 1992, Grohe, 2021]
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Experimental Results: Expressivity Requirements

# Conflicts

Domain #Q #S #S/∼iso 1-WL 2-FWL

Barman 510 115 M 38 M 1,326 0
Blocks3ops 600 146 K 133 K 50 0
Blocks4ops 600 122 K 110 K 54 0
Blocks4ops-clear 120 31 K 3 K 0 0
Blocks4ops-on 150 31 K 8 K 0 0
Childsnack 30 58 K 5 K 0 0
Delivery 540 412 K 62 K 0 0
Ferry 180 8 K 4 K 36 0
Grid 1,799 438 K 370 K 42 0
Gripper 5 1 K 90 0 0
Hiking 720 44 M 5 M 0 0
Logistics 720 69 K 38 K 131 0
Miconic 360 32 K 22 K 0 0
Reward 240 14 K 11 K 0 0
Rovers 514 39 M 34 M 0 0
Satellite 960 14 M 8 M 5,304 0
Spanner 270 9 K 4 K 0 0
Visitall 660 3 M 2 M 0 0

Table 2: #Q is # of problems; #S and #S/∼iso : # states and partitions; # conflicts. 10/12



GNN + RL for General Policies [Ståhlberg et al., 2023]

# Conflicts

Domain Coverage (%) 1-WL 2-FWL

Delivery 100% 0 0
Gripper 100% 0 0

Logistics 36% 131 0
Grid 79% 42 0

• Nearly perfect general policies obtained in several domains (100%)
• But interesting part is in the failures

• GNN expressivity not enough (Logistics, Grid, Blocks)
• Optimality-generality tradeoff
• Others: insufficient # network layers, sampling

• More expressive GNN architectures look promising for obtaining general policies
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Summary

• Two methods for learning general policies
• Combinatorial: explicit pool of features, Weighted-Max-SAT formulation [Francès et al., 2021]
• GNNs: features learned to represent value of policy functions via DRL [Ståhlberg et al., 2022]

• Two main issues:
• Scalability, in combinatorial setting
• Expressivity, in both

• Computing symmetries
• Mapping states into graphs that preserve isomorphisms
• Using state-of-the-art codes for testing graph isomorphism

• Assessing expressivity:
• Helps in understanding failures
• C3 seems sufficient (= manageable upper-bound)
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