Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches

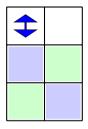
Dominik Drexler¹

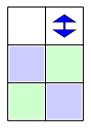
Jendrik Seipp¹

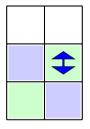
Hector Geffner^{2,1}

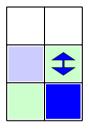
1 / 11

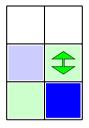
 $^1 {\rm Linköping}$ University, Linköping, Sweden, $^2 {\rm ICREA}$ & Universitat Pompeu Fabra, Barcelona, Spain

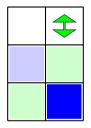

- Classical planning (deterministic + fully observable)
- We consider tractable domains with domain general strategy
- How vs what to achieve? (Policy vs Subgoal)
- Our contribution:
 - Encode **subgoal structure** using language of **policy sketches** [Bonet and Geffner, 2021]
 - Domains provably solvable in low poly time
- Search methods: iterated width, serialization [Lipovetzky and Geffner, 2012]

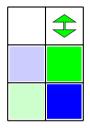

Width & Iterated Width (IW) [Lipovetzky and Geffner, 2012]

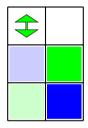

- Width w(P) measures difficulty to solve a planning problem P
- Width depends on goal that we want to achieve
- Theorem: if $w(P) \le k$ then IW(k) solves P optimally in exp(k) time
- IW(k) is breadth-first search where state s is pruned if novelty(s) > k

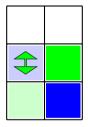

The Problem of Unbounded Width

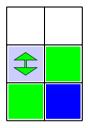

- Single goal atom \Rightarrow often small width
- \bullet Conjunctive goals \Rightarrow often unbounded width
 - Serialized Iterated Width (SIW)
 - SIW(k) runs sequence of IW(k) searches
 - Each IW(k) search decreases goal count heuristic #g
 - Subproblems: achieve single goal atom
- SIW still fails if ...
 - it traps into an unsolvable state
 - it generates a subproblem of greater width
 - the subproblem has too large width
- Policy sketches is a language for defining richer problem decompositions

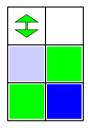


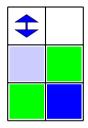


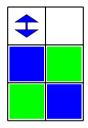


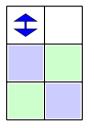


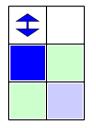




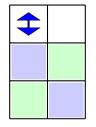




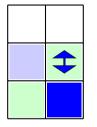



Example Domain: Floortile SIW Failure

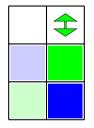
(a) Initial state s_0 : #g = 4


- Features $\Phi = \{ \#g \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0\} \mapsto \{\#g\downarrow\}$
- Serialization according to R_{Φ} : SIW_{R_{$\Phi}} = SIW$ </sub></sub>
- SIW traps into unsolvable state

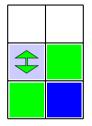
Example Domain: Floortile SIW Failure


(a) Unsolvable state s_1 : #g = 3

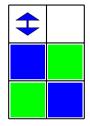
- Features $\Phi = \{ \#g \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0\} \mapsto \{\#g\downarrow\}$
- Serialization according to R_{Φ} : SIW_{R_{$\Phi}} = SIW$ </sub></sub>
- SIW traps into unsolvable state


(a) Initial state s_0 : #g = 4, Solvable = \top

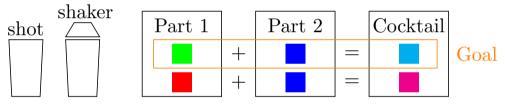
- Features $\Phi = \{ \#g, Solvable \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0, Solvable\} \mapsto \{\#g \downarrow\}$
- Theorem: R_{Φ} terminates and $w_{R_{\Phi}}(Q) = 2$

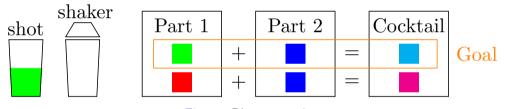

(a) Rule *r* leads to s_3 : #g = 3, *Solvable* = \top

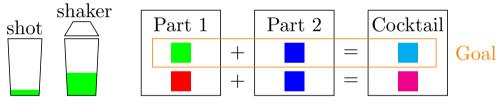
- Features $\Phi = \{ \#g, Solvable \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0, Solvable\} \mapsto \{\#g \downarrow\}$
- Theorem: R_{Φ} terminates and $w_{R_{\Phi}}(Q) = 2$

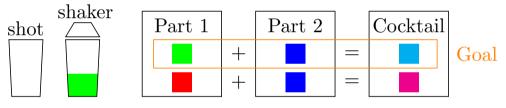

(a) Rule *r* leads to s_6 : #g = 2, *Solvable* = \top

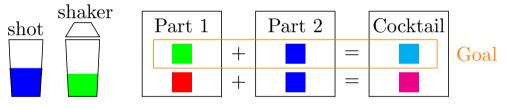
- Features $\Phi = \{ \#g, Solvable \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0, Solvable\} \mapsto \{\#g \downarrow\}$
- Theorem: R_{Φ} terminates and $w_{R_{\Phi}}(Q) = 2$

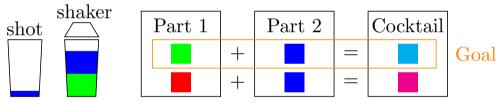

(a) Rule r leads to s_9 : #g = 1, Solvable = \top

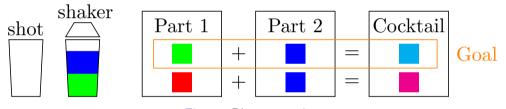

- Features $\Phi = \{ \#g, Solvable \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0, Solvable\} \mapsto \{\#g \downarrow\}$
- Theorem: R_{Φ} terminates and $w_{R_{\Phi}}(Q) = 2$

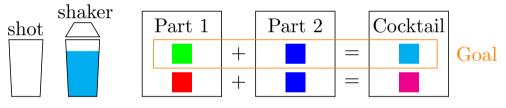


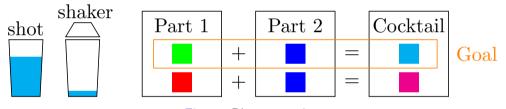

(a) Rule *r* leads to goal s_{12} : #g = 0, *Solvable* = \top

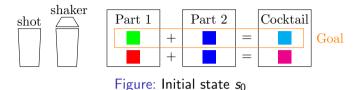

- Features $\Phi = \{ \#g, Solvable \}$
- Sketch $R_{\Phi} = \{r\}$ with $r = \{\#g > 0, Solvable\} \mapsto \{\#g \downarrow\}$
- Theorem: R_{Φ} terminates and $w_{R_{\Phi}}(Q) = 2$











- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

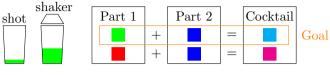


Figure: Rule r_1 leads to s_2

- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

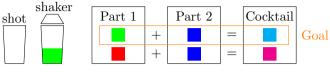


Figure: Rule r_3 leads to s3

- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

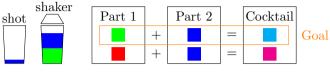


Figure: Rule r_2 leads to s5

- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

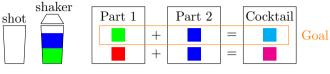


Figure: Rule r_3 leads to s6

- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

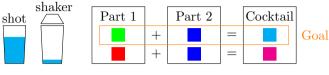


Figure: Rule r_4 leads to goal

- SIW fails because subproblem of serving cocktail has large width
- Features $\Phi = \{ \#g, dirtyShots, Consistent_1, Consistent_2 \}$

		SIW(2)				$SIW_R(2)$				LAMA		Dual-BFWS	
Domain	S	Т	AW	MW	S	Т	AW	MW	S	Т	S	Т	
Barman (40)	0	_	_	-	40	0.9	1.17	2	40	505.3	40	162.8	
Childsnack (20)	0	_	-	_	20	10.8	1.00	1	6	2.6	8	216.9	
Driverlog (20)	8	0.5	1.68	2	20	0.8	1.00	1	20	7.6	20	4.2	
Floortile (20)	0	_	_	_	20	0.2	1.25	2	2	9.9	2	176.3	
Grid (5)	1	0.1	2.00	2	5	0.1	1.00	1	5	3.6	5	3.7	
Schedule (150)	62	1349.1	1.10	2	150	54.7	1.17	2	150	15.3	150	151.4	
TPP (30)	11	74.7	2.00	2	30	0.4	1.00	1	30	16.5	29	99.6	
# Domains solved	0/7				7/7				5/7		4/7		

- Conclusions:
 - We presented compact encoding of subgoals
 - Provide deeper domain understanding and poly runtime guarantees
- Future work:
 - Learn sketches automatically, unsupervised from small instances
 - Learn hierarchies

Bonet, B. and Geffner, H. (2021).

General policies, representations, and planning width. In *Proc. AAAI 2021*, pages 11764–11773.

Lipovetzky, N. and Geffner, H. (2012).
Width and serialization of classical planning problems.
In *Proc. ECAI 2012*, pages 540–545.