Expressing and Exploiting the Common Subgoal Structure of Classical Planning Domains Using Sketches

Dominik Drexler,¹ Jendrik Seipp,¹ Hector Geffner^{2,1}

¹Linköping University, Linköping, Sweden, ²ICREA &Universitat Pompeu Fabra, Barcelona, Spain {dominik.drexler, jendrik.seipp}@liu.se, hector.geffner@upf.edu

In a Nutshell

- Classical planning
- We consider tractable planning domains
- Policy sketch defines subgoal structure
- **Contribution**: We encode subgoal structure using compact policy sketches to solve whole domains in provably low poly time
- Subproblems are solved with iterated width
- Partial plans are serialized

Iterated Width

- \blacktriangleright IW(k) is breadth-first search where a newly generated state s is pruned if novelty(s) > k
- \blacktriangleright novelty(s) := smallest size of tuple of atoms made true for the first time
- \blacktriangleright IW(k) requires exp(k) time
- \blacktriangleright When does IW(k) solve a problem?

Width

The width w(P) of problem P is the minimum k for which there exists a sequence of atom tuples t_0, t_1, \ldots, t_m each consisting of size at most k atoms, such that

- **1.** t_0 is true in the initial state of P,
- 2. all opt. plans for t_i can be extended into an opt. plan for t_{i+1} by adding a single action, $i = 1, \ldots, m-1$,
- 3. if π is an opt. plan for t_m , then π is an opt. plan for P.
- **Theorem:** if $w(P) \leq k$ then IW(k) solves P **optimally** in exp(k) time

The Problem of Unbounded Width

- **Single goal atom** \Rightarrow often small width
- **Conjunctive goals** \Rightarrow often unbounded width
 - Serialized Iterated Width (SIW)
 - \blacktriangleright SIW(k) runs sequence of IW(k) searches Each IW search decreases goal counter #gSubproblems of achieving single goal atom
- ► SIW still fails if ...
- it traps into an unsolvable state
- it generates a subproblem of greater width
- the subproblem has too large width
- Richer decompositions using **policy sketches**
- Consider some possibly infinite class of problems Q over some common domain D
- **Policy sketch** (sketch) R defines subgoal structure in every $P \in Q$
- Sketch R is set of **rules** of form $C \mapsto E$ over features Φ
- **Sketch width** $w_R(Q)$ is maximum width of all subproblems in all $P \in Q$
- **SIW_R** serializes according to subgoals defined by sketch R
- **Theorem:** if $w_R(Q) \leq k$ then SIW_R solves all $P \in Q$ in $\exp(k)$ time

Policy Sketches

Example Domain: Grid

- Domain description:
 - Robot, key(s), lock(s) distributed in a grid
- SIW generates subproblem of large width
- Features $\Phi = \{l, \#g, kl, kg\}$
 - ► *l* is number of closed locks
 - #g is number of wellplaced keys
 - ► *kl* whether robot holds key to open lock
 - ► kg whether robot holds misplaced key
- ► Rules $R_{\Phi} = \{r_1, r_2, r_3, r_4\}$
 - ▶ $r_1 = \{l > 0\} \mapsto \{l\downarrow, \#g?, kl?, kg?\}$
 - ► $r_2 = \{l = 0, \#g > 0\} \mapsto \{\#g\downarrow, kl?, kg?\}$
 - ▶ $r_3 = \{l > 0, \neg kl\} \mapsto \{kl, kg?\}$
 - ▶ $r_4 = \{l = 0, \#g > 0, \neg kg\} \mapsto \{kl?, kg\}$
- $\blacktriangleright w_{R_1}(Q) = 2$ for $R_1 = \{r_1, r_2\}$
- $\blacktriangleright w_{R_2}(Q) = 1$ for $R_2 = \{r_1, \ldots, r_4\}$

Experiments

	SIW(2)			SIW _R (2)			LAMA		Dual-BFWS	
Domain	S	Т	MW	S	Т	MW	S	Т	S	Т
Barman (40)	0	_	_	40	0.9	2	40	505.3	40	162.8
Childsnack (20)	0	—	—	20	10.8	1	6	2.6	8	216.9
Driverlog (20)	8	0.5	2	20	0.8	1	20	7.6	20	4.2
Floortile (20)	0	—	—	20	0.2	2	2	9.9	2	176.3
Grid (5)	1	0.1	2	5	0.1	1	5	3.6	5	3.7
Schedule (150)	62	1349.1	2	150	54.7	2	150	15.3	150	151.4
TPP (30)	11	74.7	2	30	0.4	1	30	16.5	29	99.6
# Solved	0/7			7/7			5/7		4/7	

```
Robot cannot move on a place with closed lock
Goal: well place keys; can require opening locks
```


