
Equivalence-Based Abstractions for Learning General Policies

Dominik Drexler1, Simon Ståhlberg, Blai Bonet2, Hector Geffner3,1

1Linköping University, Sweden
2Universitat Pompeu Fabra, Spain

3RWTH Aachen University, Germany
dominik.drexler@liu.se, simon.stahlberg@gmail.com, bonetblai@gmail.com, hector.geffner@ml.rwth-aachen.de

Abstract

Identifying state symmetries plays a crucial role in minimiz-
ing the number of states explored during search, yet identify-
ing precisely all symmetries is computationally hard. In the
context of learning general policies that solve instances of
arbitrary size from small instances, however, this computa-
tional bottleneck is not a problem. In this paper, we address
the task of identifying all state symmetries through the lens
of the graph isomorphism problem. To accomplish this, we
represent states as undirected, labeled graphs that reflect the
relational structure of states and the goal. We then use off-the-
shelf graph isomorphism algorithms to determine whether
two states are isomorphic with respect to the goal. The iso-
morphism relationship forms equivalent classes that result in
an abstract state space that can be used instead of the origi-
nal one to learn general policies more efficiently. While this
abstract state space can be used for many different learning
tasks, we focus on learning symbolic general policies where
we show that the proposed approach can lead to significant
speedups.

Introduction
In generalized planning, the task involves obtaining a gen-
eral strategy for solving a class of instances Q drawn from
the same planning domain. A classical planning domain en-
sures that all instances in Q share a structure given by a
common set of action schemas and predicates (Srivastava,
Immerman, and Zilberstein 2011; Jiménez, Segovia-Aguas,
and Jonsson 2019; Toyer et al. 2020; Yang et al. 2022; Sri-
vastava 2022).

These general strategies, also called general plans or poli-
cies, are predominantly learned (Srivastava, Immerman, and
Zilberstein 2008; Bonet, Palacios, and Geffner 2009; Hu
and Giacomo 2011; Belle and Levesque 2016; Celorrio,
Segovia-Aguas, and Jonsson 2019; Illanes and McIlraith
2019) rather than synthesized, and this is a done from a di-
verse set of small instances from Q (Ståhlberg, Bonet, and
Geffner 2022a,b). For this, these approaches generate the
complete (reachable) state space for each problem within
the training set, and find a policy that works across all such
states. The learned policy is then validated on slightly larger
problems from Q, referred to as the validation set. In the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

symbolic setting, where the learning problem is formulated
as a combinatorial optimization problem, the resulting gen-
eral policies can be understood and be shown to be correct
over all problems in the target class Q, even if the number
of such problems is infinite (Bonet, Francès, and Geffner
2019; Francès, Bonet, and Geffner 2021). Similar methods
have been used to learn sketches as well with similar formal
properties (Drexler, Seipp, and Geffner 2022).

A computational bottleneck of the symbolic approach to
generalized planning is that even for small instances in Q,
the complete state space can be huge; for example, in Grip-
per, the task is to move balls from one room to another,
and with n balls and 2 rooms, there are at least 2n reach-
able states. The size of the instances in the training set limits
the scope of the combinatorial approach for learning general
policies that cannot deal optimally with training instances of
large sizes. It turns out, however, that many pairs of states
in the training set are equivalent, meaning that a solution
for one state implies a solution for the other. This suggests
that the number of states for the training set can be signifi-
cantly reduced by considering just one representative of each
equivalent class of states.

In this work, we take the first steps toward formalizing
this intuition and developing methods that are computation-
ally effective. For this, we define a class of problem ab-
stractions that reduce the size of the state space while pre-
serving solutions as captured by general policies expressed
in terms of features defined from the domain predicates in
first-order logic. We show then that these abstractions can
be obtained by finding the states that are structurally equiv-
alent, a notion that is formalized in terms of isomorphisms
over relational structures, and which is computed by reduc-
ing relational structures (states) to plain colored graphs and
using state-of-the-art algorithms for testing graph isomor-
phism (GI). While GI is not known to be in P, there are very
efficient codes for testing GI over large graphs, much larger
than those resulting from the states in the training instances.

The paper is organized as follows. After discussing related
work, we review planning, generalized planning, relational
structures, and graphs. Then we introduce faithful and uni-
form abstractions, look at the notion of isomorphic relational
structures (states), and the computation of such abstractions
via graph isomorphisms. We conclude with the experiments
and summary.

Related Work
Identifying Symmetries. The concept of identifying sym-
metries is closely related to equivalence relations, where
symmetric states are considered equivalent and thus mapped
to the same abstract state. Identifying such states helps
to prune the search space (Shleyfman et al. 2015), gen-
erate abstractions to either solve the problem directly or
to construct heuristic functions (Edelkamp 2001; Haslum
et al. 2007; Helmert et al. 2014; Nissim, Hoffmann, and
Helmert 2011), and transform the underlying representation
of the instance (Riddle et al. 2016). However, a common
thread among existing approaches, to the best of the authors’
knowledge, is that actions are explicitly considered in iden-
tifying symmetries. Contrary to these approaches, our ap-
proach considers them implicitly. We show that as long as
action schemas have a specific structure, explicit consider-
ation is not necessary. For example, the method proposed
by Pochter, Zohar, and Rosenschein (2011) uses off-the-
shelf algorithms to compute automorphisms on a Problem
Description Graph (PDG). Notably, this graph contains state
variables and ground actions. The PDG has been used in
subsequent research (Shleyfman et al. 2015), including lifted
versions that encode action schemas rather than ground ac-
tions (Sievers et al. 2019). Other approaches use abstract
representations to identify symmetries (Sievers et al. 2017),
where this representation includes actions. It is worth not-
ing that some symmetry breaking methods consider both the
initial state and the goal; however, we are only interested in
whether two states are equivalent with respect to the goal.

General policies from logic. The problem of learning
general policies has a long history (Khardon 1999; Martı́n
and Geffner 2004; Fern, Yoon, and Givan 2006; Jiménez,
Segovia-Aguas, and Jonsson 2019), general policies have
been formulated in terms of logic (Srivastava, Immerman,
and Zilberstein 2011; Illanes and McIlraith 2019), regres-
sion (Boutilier, Reiter, and Price 2001; Wang, Joshi, and
Khardon 2008; Sanner and Boutilier 2009), and policy rules
(Francès, Bonet, and Geffner 2021; Drexler, Seipp, and
Geffner 2022; Yang et al. 2022; Srivastava 2023; Silver et al.
2024).

General policies from neural nets. Deep learning (DL)
and deep reinforcement learning (DRL) (Sutton and Barto
1998; Bertsekas 1995; François-Lavet et al. 2018) have
been used to learn general policies (Kirk et al. 2023). In
some cases, the planning representation of the domain is
used (Toyer et al. 2020; Bajpai, Garg et al. 2018; Rivlin,
Hazan, and Karpas 2020); in most cases, it is not (Groshev
et al. 2018; Chevalier-Boisvert et al. 2019), and in practically
all cases, the neural networks are GNNs or variants.

Background
We review basic notions of planning, generalized planning,
relational structures, and graphs.

Classical Planning
A planning problem is a pair P = 〈D, I〉 where D is a gen-
eral first-order domain containing a set of predicates (or re-

lations)R, each with given arity, and a set of action schemas
of the form 〈pre, eff 〉 where pre is an arbitrary first-order
formula and eff is an arbitrary effect, and I is specific in-
stance information that contains the set of objects O, two
sets of ground atoms, Init and Goal , that describe the ini-
tial and goal situations, respectively. The problem P defines
the state model S◦P = 〈S, sI , G,Act , A, f〉 where the states
in S are the truth valuations over the ground atoms, where
each such valuation is represented by the set of atoms true in
the valuation. The functionAmaps states s into the setA(s)
of ground actions from Act that are applicable in s, and the
state transition function f maps states s and a ∈ A(s) into
the resulting state s′ = f(s, a).

The unlabeled state model for the problem P is the tuple
SP = 〈S, sI , G,Succ〉 where the actions are compiled away,
and states have a set of possible successor states instead. In
this unlabeled model, the first three components are those
for S◦P , while Succ = {(s, f(s, a)) | a∈A(s)} is the (unla-
beled) successor relation.

A trajectory seeded at state s0 in P is a state sequence
s0, s1, . . . , sn such that (si, si+1) is in Succ, 0 ≤ i < n. A
state s is reachable in P if there is a trajectory seeded at the
initial state sI that ends in s. For a reachable state s, a plan
from s is a trajectory seeded at s that ends in a goal state.

Generalized Planning
A generalized planning problem (Bonet and Geffner 2018)
is defined by a class Q of problems P over a common do-
main D. A state feature φ for Q is a function that maps the
reachable states for the problems in Q into values. The fea-
ture φ is said to be Boolean if the values are Boolean, and
numerical if the values are non-negative integers. The value
of a feature φ at state s is denoted by φ(s). If Φ is a set of
features, Φ(s) denotes the vector of values φ(s) for φ ∈ Φ.

A general policy π for Q is a relation on state pairs.
A trajectory s0, s1, . . . , sn is a π-trajectory seeded at s0 if
(si, si+1) is a state transition that is in both P and in π,
0 ≤ i < n. The relation π solves s if each maximal π-
trajectory seeded at s reaches a goal state, it solves P if it
solves the initial state of P , and it solves Q if it solves each
problem P in Q.

In generalized planning, goals are encoded as part of the
state as follows. For each atom p(ō) that appears in the goal
condition G, a new relational symbol pg of the same arity
of p is created. Then, the initial situation I is extended with
the atoms {pg(ō) | p(ō)∈G} which are static and thus re-
main in every reachable state (Martı́n and Geffner 2004).
Adding these “goal atoms” in the state allows general poli-
cies/sketches to take the specific goal of the instance into ac-
count. In this way, the resulting policies generalize not just
to instances with different numbers of objects and different
initial states but also to instances with different goals.

States, Relational Structures, and Graphs
A (planning) state defines a relational structure As with
universe Us =O for the set of objects O in s, and in-
terpretations Rs⊆ (Us)k for each predicate R of arity k
in the planning domain D, where 〈o1, o2, . . . , ok〉 ∈Rs iff
R(o1, o2, . . . , ok) is true in s. The signature of a relational

structure A is the set of relational symbols in A. We assume
fully relational structures that contain no functions nor con-
stants (nullary functions). This type of structures are ade-
quate for planning problems described in PDDL.

While a planning state defines a relational structure, rela-
tional structures can be encoded by graphs, a mapping that
we will use to test state equivalence. Recall that a directed
graph, or graph, is a pair G = (V,E) where V is the set of
vertices andE ⊆ V 2 is the set of edges. An undirected graph
is a directed graphGwhereE is symmetric; i.e., (v, w) ∈ E
iff (w, v) ∈ E. Two graphs G = (V,E) and G′ = (V ′, E′)
are isomorphic, denoted by G 'g G′, if there is a bijection
f : V → V ′ such that (u, v)∈E iff (f(u), f(v))∈E′.

A vertex-colored graph is a tuple G = (V,E, λ) where
(V,E) is a graph, and λ : V → C maps vertices to the
colors in C. Two vertex-colored graphs G = (V,E, λ) and
G′ = (V ′, E′, λ′) are isomorphic, denoted as G 'g G′,
iff there is a color preserving isomorphism f from G to G′,
i.e., λ(v) = λ′(f(v)) for v ∈ V . If the graphs G and G′ are
isomorphic via the bijection f , we write f : G→ G′.

Abstractions
We aim at formalizing the notion of equivalence relations ∼
on the reachable states for the problems inQ with the objec-
tive of reducing the size of the training sets when learning
policies and sketches. If QT ⊆Q is a training set, QT /∼
consists of the abstract unlabeled state models induced by
∼ for the problems in QT . For a problem P in QT with un-
labeled state model SP = 〈S, sI , G,Succ〉, the abstract unla-
beled state model is the tuple S̃P = 〈S̃, [sI], G̃, S̃ucc〉 where

1. S̃ .
= {[s] | s ∈ S} is the set of equivalence classes for P ,

2. [sI] is the equivalence class for initial state sI of P ,

3. G̃ .
= {[s] | s ∈ G} is the set of goal classes, and

4. S̃ucc .= {([s], [s′]) | (s, s′) ∈ Succ}.

The successor relation in S̃P is the existential quantification
of the successor relation in SP . Hence, generalized plans
that solve S̃P do not necessarily solve SP . For this, we need
further conditions:

Definition 1 (Faithful Relations). Let Q be a class of plan-
ning problems, and let∼ be an equivalence relation over the
reachable states in Q. The relation ∼ is faithful iff

1. for any P inQ, any reachable transition (s, s′) in P , and
any reachable state t in P with t∼ s, there is a state t′
such that t′∼ s′, and (t, t′) is a transition in P , and

2. if s∼ t for reachable states s and t in P , then s is a goal
state iff t is a goal state.

We write (s, s′)∼ (t, t′), for two pairs (s, s′) and (t, t′),
to denote that s∼ t and s′∼ t′. A faithful relation is noth-
ing else than a bisimulation among the states in problem P
under unlabeled transitions (Sangiorgi 2012).

Theorem 2 (Faithful Abstractions). Let∼ be a faithful rela-
tion on the classQ, and let P be a problem inQ. Then, 1) if
s0, s1, . . . , sn is a trajectory in SP , then [s0], [s1], . . . , [sn]

is a trajectory in S̃P , and 2) if [s0], [s1], . . . , [sn] is a

trajectory in S̃P , for each s′0 in [s0], there is trajectory
s′0, s

′
1, . . . , s

′
n in SP with s′i∼ si for 0 ≤ i ≤ n.

Proof. The first claim is direct by the definition of S̃P .
For the second, notice that ([si], [si+1]) in S̃ucc implies
there is a transition (s′′i , s

′′
i+1) with (si, si+1)∼ (s′′i , s

′′
i+1),

for 0≤ i<n. We construct the required trajectory in SP
inductively. By faithfulness, there is s′1 such that (s′0, s

′
1)

is in Succ and s′1∼ s′′1 . Hence, s′1∼ s1. After constructing
s′0, s

′
1, . . . , s

′
k, we have s′k ∼ sk. By faithfulness, there is

transition (s′k, s
′
k+1) with s′k+1∼ s′′k+1. Thus, s′k+1∼ sk+1,

and the trajectory can be extended with s′k+1.

Corollary 3. Let ∼ be a faithful relation on the class Q,
and let P be a problem in Q. If s and t are reachable states
in P such that s∼ t, then V ∗(s) = V ∗(t).

Faithfulness allows us to work with the abstraction, but it
does not take into account the form of the policy π. Namely,
it can be the case that a transition (s, s′) in P belongs to π
but not a transition (t, t′) with (t, t′)∼ (s, s′). This will not
happen, however, for the large class of uniform policies:
Definition 4 (Uniform Policies). Let Q be a class of plan-
ning problems, let ∼ be an equivalence relation over the
reachable states in Q, and let Π be a class of policies for
Q. A policy π in Π is uniform for ∼ iff for any problem P
in Q, and any reachable transition (s, s′) in P , if (t, t′) is a
reachable transition in P and (s, s′)∼ (t, t′), then (s, s′) is
in π iff (t, t′) is in π. When the relation ∼ is clear from con-
text, we just say that π is uniform. The class Π of policies is
uniform if each policy π in Π is uniform.

Uniform classes of policies allow us to reduce the training
set with the equivalence relation:
Theorem 5 (Solvability). Let Q be a class of problems, let
∼ be an equivalence relation for the reachable states in Q,
and let Π be a class of policies for Q. If ∼ is faithful and
Π is uniform, then for any policy π in Π: π solves Q iff π
solves the abstraction Q/∼.

Proof. Let us assume that π solves Q, and suppose that it
does not solve Q/∼. Then, there is a maximal trajectory
[s0], [s1], . . . , [sn] seeded at the initial class [s0] of Q/∼
that is not goal reaching. By Theorem 2, there is a trajectory
s′0, s

′
1, . . . , s

′
n in P such that s′i∼ si, for 0 ≤ i ≤ n. By

faithfulness and uniformity, such a trajectory is a maximal
π-trajectory. On the other hand, the state s′n cannot be a goal
state since [sn] is not a goal state. Hence, π cannot solve
Q, which contradicts the assumption. The other direction is
shown similarly.

A standard way to obtain policies that are uniform for
the equivalence relation is to define them in terms of state
functions. We say that a policy π for a class Q is function-
or feature-based if there is a function f that maps reach-
able states in Q into a domain Domf such that π chooses
which transition to take at a state s in problem P in Q by
just looking at the value pairs 〈f(s), f(s′)〉 for the possible
state transitions (s, s′) from s. In general, if f is invariant
under ∼, π is automatically uniform. The rule-based poli-
cies used in symbolic approaches for generalized planning,

e.g., (Bonet, Francès, and Geffner 2019), are function-based
policies, as they select transitions by just looking at the value
pairs (Φ(s),Φ(s′)) for a fixed set Φ of state features; and
also the GNN-based policies (Ståhlberg, Bonet, and Geffner
2022a) that greedily select transitions (s, s′) by minimizing
the state values V (s′) of successor states s′. Theorem 5 im-
plies that in these cases, one can partition the states in the
training set into equivalence classes, while just keeping one
state per partition, without loosing any information. Policies
that work for the selected states are guaranteed to work for
the pruned states as well. This is elaborated below.

Isomorphic Relational Structures (States)
As we only consider classesQ over STRIPS domainsD, the
relation that deems two states s and t equivalent when their
relational structures are isomorphic is a faithful equivalence
relation over states.

Definition 6 (Isomorphic Structures). Two relational struc-
tures A and B, over a common universe U and signature
(without constants), are isomorphic, written as A ' B, iff
there is a permutation σ on U such that for each relation R
of arity k, RB = {σ(ū) | ū∈RA}, where σ(ū) for the tuple
ū= 〈u1, u2, . . . , uk〉 is the tuple 〈σ(u1), σ(u2), . . . , σ(uk)〉.
We say that σ maps A into B, and write σ : A→ B.

Isomorphic structures satisfy the same set of sentences
and the same set of formulas under suitable permutations.
The following is a standard result.

Lemma 7. Let A and B be two relational structures, and
let ϕ(x̄) be a first-order formula whose free variables are
among the ones in x̄. If σ : A → B, then for any tuple ū of
objects of the same length as x̄, A � ϕ(ū) iff B � ϕ(σ(ū)).
In particular, if ϕ is a sentence (i.e., it has no free variables),
A � ϕ iff B � ϕ.

We now establish the main result about faithful relations,
and the uniformity of feature-based and GNN-based classes
of policies.

Theorem 8 (Main). Let Q be a class of problems. If ∼iso
is the binary relation on the reachable states in Q given by
s∼iso t iff As'At, then ∼iso is a faithful relation.

Proof (sketch). That ∼iso is an equivalence relation follows
from ' being an equivalence relation on structures.

Let P be a problem in Q, let (s, s′) be a reachable tran-
sition in P , and let t be a reachable state in P with t∼iso s.
We need to show that there is a transition (t, t′) in P with
t′∼iso s′. By assumption, σ : As → At for some permuta-
tion σ, and there is a ground action a(ō) with s′= f(s, a(ō)).
In particular, As � pre(ō) and thus, by Lemma 7, At �
pre(σ(ō)) (i.e. the ground action a(σ(ō)) is applicable in t).
It is not hard to show that t′∼iso s′ for t′= f(t, a(σ(ō))).

For the second condition, let P be a problem inQ. As the
states are assumed to contain goal atoms that determine the
goal in P , the sentence ϕg =

∧
p ∀x̄

[
pg(x̄)→ p(x̄)

]
, where

the conjunction is over all predicates p in D, pg is the goal
predicate for p, and the size of x̄ is the arity of p, determines
whether a state s in P is a goal state; i.e., s is a goal state
iff As � ϕg . Hence, if s and t are reachable states in P such

that s∼iso t, then As � ϕg iff At � ϕg; i.e., s is a goal state
iff t is a goal state.

A state feature φ for the class Q is first-order definable
(on the set of predicates in the underlying domain D) iff for
each value v in Domφ, there is a sentence ϕφ,v such that for
any reachable state s in Q, φ(s) = v iff As � ϕφ,v . There-
fore, if Π is a class of rule-based policies, where each π in Π
is defined over a set Φ = Φπ of first-order definable features,
then Π is uniform for∼iso, since s∼iso t for two reachables
states s and t implies Φ(s) = Φ(t). This is actually the case
for the symbolic approaches mentioned above as they work
with pools of first-order definable features. Likewise, if the
graphs G(s) or G(s, s′) induced by states s or transitions
(s, s′) are preserved under∼iso, the class Π of such policies
is uniform for ∼iso. This holds for the graphs used in the
GNN-based approaches mentioned before.

Computing Abstractions
Checking ∼iso on two reachable states can be reduced to
a graph-isomorphism test on vertex-colored graphs that we
call object graphs and that encode relational structures as
vertex-colored undirected graphs.

On the theoretical side, the exact complexity of graph iso-
morphism is still unknown, but it can be tested in quasi-
polynomial time (Babai 2016). However, in practice, the test
can be performed efficiently (McKay and Piperno 2014); see
discussion in Babai (2016, page 83). Indeed, we use the tool
called nauty by McKay and Piperno (2014) that computes
a canonical representation of an input graph which is pre-
served under graph isomorphism. nauty is an state-of-the-
art tool that applies Color Refinement, recursively, using a
technique called vertex individualization.
Definition 9 (Object Graphs). Let A be a relational struc-
ture with universe U , and relational symbols Ri, each of
arity ki, 0 ≤ i < n. The object graph for A is the vertex-
colored undirected graph G(A) = (V,E, λ) where the set
V of vertices consists of

1. vertices v= 〈u〉 with color λ(v) =⊥ for u∈U , and
2. vertices v= 〈Ri, j, ū〉 with color λ(v) = 〈Ri, j〉 for each

relation Ri, 1 ≤ j ≤ ki, and tuple ū∈ (Ri)
A.

The set of edges E consists of

1. edges connecting the vertices 〈uj〉 and 〈Ri, j, ū〉 if ū =
〈u1, u2, . . . , uki〉, and

2. edges connecting the vertices 〈Ri, j, ū〉 and 〈Ri, j+1, ū〉
for 1 ≤ j < ki.

The vertices of the form 〈u〉 are called object vertices, and
vertices of the form 〈R, j, ū〉 are called positional-argument
vertices. The first type of edge connects object vertices to
corresponding positional-argument vertices, while the sec-
ond type of edge connects the j-th with the (j + 1)-st
positional-argument vertex.
Example. Consider the Gripper domain, where the goal is
to move all balls from room A to room B with a robot. The
robot has two grippers, it can move between the rooms, and
it can pick and drop balls with any of the grippers. Figure 1
shows the object graph G(As) for a state s where there is a

〈gripper , 1, 〈L〉〉 〈gripper , 1, 〈R〉〉 〈ball , 1, 〈b〉〉

〈L〉 〈R〉 〈b〉

〈atg, 1, 〈b,B〉〉〈carry , 1, 〈b,R〉〉〈carry , 2, 〈b,R〉〉

〈atg, 2, 〈b,B〉〉〈room, 1, 〈B〉〉〈at-robot , 1, 〈B〉〉〈room, 1, 〈A〉〉

〈A〉 〈B〉

Figure 1: Object graph G(As) for a state s in Gripper in-
stance containing two grippers L and R, one ball b, and two
rooms A and B. In the state s, the robot is at B, the ball is at
gripper R, and the goal is for the ball to be room B. The goal
is specified in the state using the goal predicate atg . This
graph is isomorphic to the graph G(At) for a state t that is
like s except that the ball is at gripper L.

single ball, the robot is at room B, and the ball is being held.
This graph is isomorphic to G(At) where the state t is like
s, except that the ball is held by the other gripper.

Theorem 10 (Reductions). Let A and B be two relational
structures over a common universe U and signature (with
no constant symbols). Then, A ' B iff G(A) 'g G(B).

Proof (sketch). First assume A'B with σ :A→B. We
construct a color-preserving isomorphism f from G(A) to
G(B): for object vertices, f(〈u〉) .

= 〈σ(u)〉, while for
positional-argument vertices, f(〈R, j, ū〉) .

= 〈R, j, σ(ū)〉. It
can be seen that f is an edge-preserving bijection between
the vertices of both graphs. Additionally, λ(〈u〉) = ⊥ =
λ(〈σ(u)〉), and λ(〈R, j, ū〉) = 〈R, j〉 = λ(〈R, j, σ(ū)〉).
Hence, f is a color-preserving isomorphism.

For the converse, let us assume that f is a color-preserving
isomorphism fromG(A) toG(B). Consider the function σ :
U→U defined by σ(u) =u′ iff f(〈u〉) = 〈u′〉. As no object
vertex has the color of a positional-argument vertex, σ is a
U -permutation. We need to show σ : A → B; i.e., for each
relation R,

RB = {σ(ū) | ū ∈ RA} . (1)
The set of vertices related to a tuple ū in RA is
V (A, ū) = {〈ui〉 | ui ∈ ū} ∪ {〈R, j, ū〉 | 1 ≤ j ≤ k}. Such
a set induces a subgraph G(A, ū) of G(A). It is not hard to
see that (1) holds iff the subgraphsG(A, ū) andG(B, σ(ū)),
for all tuples ū ∈ RA, are isomorphic through the (restric-
tion of) f . As this is the case, (1) holds, and A ' B.

By Theorem 10, we can use nauty to identify equivalent
states. Other state encodings have been proposed that are not
aimed at testing structural equivalence but at using standard
GNN libraries (Ståhlberg, Bonet, and Geffner 2022a; Chen,
Trevizan, and Thiébaux 2023). While the theoretical rela-
tionship between GNNs and first-order logics with counting
quantifiers Ck is known (Grohe 2021), the theoretical ca-
pabilities on preserving this relationship for different state
encodings (e.g., object graphs) is not clear.
Example. Let us consider an instance P of Gripper with n
balls, 2 grippers, and 2 rooms. It turns out that two states

#A = n ,
#G = 0 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = A

#A = n− 2 ,
#G = 2 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 2 ,
L = B

#A = n− 1 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
L = A

#A = n− 2 ,
#G = 0 ,
L = A

pick

drop

pick

drop

move

move
movemove

droppick droppick

droppick

move

move

move

move

Figure 2: Fragment of the state model S̃P for a Gripper in-
stance with n balls, 2 grippers, and 2 rooms. Each equiva-
lence class is identified by the number of balls at room A
(#A), the number of balls being held (#G), and the po-
sition of the robot (L). For better understanding, we label
transition with the action schemas that induce them. The ab-
straction contains 6n abstract states (see text).

s and t are equivalent if both have the same number of
balls in each room, and the robot is in the same room in
each state. Thus, the number of non-isomorphic states is
6n = 2[(n + 1) + n + (n − 1)]: for each of the two pos-
sible positions of the robot, there are n + 1 states with no
ball being held, n states with 1 ball being held, and n − 1
states with two balls being held. On the other hand, the
(plain) state space contains an exponential number of states:
when no ball is being held, for example, each ball and the
robot can be in either room, for a total of 2n+1 states. Thus,
the reduction translates into abstractions for Gripper that
are exponentially smaller. Figure 2 shows a fragment of the
state model S̃P for the abstraction of such an instance P ,
where each “abstract state” is represented with the features
Φ = {#A,#G,L} where #A counts the number of balls in
room A, #G counts the number of balls being held, and L is
the position of the robot, either A or B. The number of balls
in room B is determined by the features #A and #G.

Experiments
The testing for the equivalence relation ∼iso is im-
plemented in Python using the graph-isomorphism tool
nauty (McKay and Piperno 2014), and the planning library
Mimir (Ståhlberg 2023). The relation ∼iso is used to re-
duce the training sets for learning sketches and general poli-
cies (i.e., sketches of width zero) within the sketch learning
framework of Drexler, Seipp, and Geffner (2022) which is
implemented in Clingo (Gebser et al. 2012). The benchmark
set consists of different tractable classical planning domains
from the International Planning Competition (IPC).

The learning is done on two Intel Xeon Gold 6130 CPUs
with 32 cores, 96 GiB of memory, and a time budget of 24

with equivalence-based reduction without equivalence-based reduction

Domain M Tpre Tlearn QT /∼iso M Tpre Tlearn QT

Blocks3ops 9 537 6,876 4,901 9 992 71,299 145,680
Blocks4ops-clear 1 2 3 86 1 4 71 30,540
Blocks4ops-on 2 60 185 249 3 192 301 30,540
Delivery 1 166 290 3,346 3 820 15,355 411,720
Ferry 1 14 70 265 1 20 41 8,430
Gripper 1 4 2 90 1 3 7 1,084
Miconic 1 40 37 17,661 1 10 77 32,400
Reward 1 23 26 7,026 1 5 93 13,394
Spanner 1 3 3 525 1 3 5 9,291
Visitall 2 1,761 14,163 446,005 2 46 15,487 476,766

Table 1: Learning general policies with and without equivalence-based reductions. The table shows the memory in GiB (M), the
wall-clock times in seconds for preprocessing (Tpre), grounding, solving the ASPs and validation (Tlearn), and the total number
of states in the training set (QT), and the reduced training set (QT /∼iso). We use boldface to denote the winner in the pairwise
comparison, i.e., the one with strictly fewer resources needed.

hours. Since the reductions are often much smaller, we use
training instances with up to 10,000 states instead of the
2,000 states previously used (Drexler, Seipp, and Geffner
2022). We tested the generalization of all learned general
policies on much larger instances.

Table 1 shows a summary of the times required for prepro-
cessing (that include the tests for ∼iso) and learning of the
general policies. The sizes of the training and reduced train-
ing sets,QT andQT /∼iso respectively, are also shown. We
remove problems from QT /∼iso if the initial state is iso-
morphic to a state in another instance. As it can be seen,
the total overhead incurred by testing ∼iso (i.e., the differ-
ence between the two figures for Tpre) is relatively small,
except for Visitall where the preprocessing time increases
from 46 to 1,761 seconds because of the additional graph
isomorphism test. On the other hand, the learning time of-
ten decreases except for Blocks3ops, where it decreases 10-
fold from 71,299 to 6,876 seconds, which is caused by the
non-determinism in the parallelized Clingo solver and not
by symmetry pruning. The method for learning general poli-
cies iteratively selects small training instances, with a total
number of states often less than 50 to find a general policy
that solves all the training instances. The reduction in train-
ing data used in the Clingo encoding in such cases is of-
ten small. The largest improvement can be seen in Delivery
where a significant reduction in training data from 411,720
states (relational structures) to 3,346 abstract states results
in a learning speedup from 15,043 to 290 seconds primarily
caused by a much faster validation on the abstract states.

Discussion
We have presented a general and principled method for re-
ducing the training sets for learning policies in generalized
planning while preserving both information and solutions.
This is important because in symbolic approaches for learn-
ing provably correct general policies (and also sketches),
the scope of the methods is limited by the scalability of
the combinatorial solvers. Large instances are needed to ob-
tain policies that generalize, but the solvers cannot deal with
large instances optimally. The proposed method is based on

the notion of state abstractions that satisfy two key proper-
ties: faithfulness and uniformity. It is then shown that state
(relational structure) isomorphism delivers abstractions that
are faithful and uniform, and that state isomorphism can
be computed efficiently by reducing states to vertex-colored
graphs and using state-of-the-art codes for testing graph iso-
morphism. Interestingly, slightly different mapping of plan-
ning states into graphs have been used recently for learning
planning heuristics using graph neural networks (Chen, Tre-
vizan, and Thiébaux 2023; Chen, Thiébaux, and Trevizan
2023), while (Ståhlberg, Bonet, and Geffner 2022a,b, 2023)
learn general policies using relational GNNs. The reduction
methods proposed in this work can also be used with GNNs.
Moreover it can be used with architectures that extend the
expressive power of GNNs, like k-GNNs (Ståhlberg, Bonet,
and Geffner 2024), as it is well known all these architec-
tures cannot distinguish graphs (states) that are structurally
isomorphic (Grohe 2021).

Finally, the abstract state graphs that result from the
equivalence reduction and which compile the object names
away, represent meaningful structures that can be used to
learn general policies more effectively. For example, the
Boolean and numerical features introduced in Figure 2
above to identify the states in the resulting abstraction suffice
to define a general policy for the domain. This idea can be
generalized and may lead to an alternative way of learning
the features that support general policies for a given domain;
an idea that we would like to explore in the future.

Conclusions
This paper presented a formal method for reducing the train-
ing data needed to learn general policies using symmetry re-
duction based on graph isomorphism. Our general method
is applicable to different learning tasks in planning and re-
inforcement learning. The overall reduction in training data
can be exponential, and the resulting abstractions are mean-
ingful on their own. Our experiments show a significant re-
duction in training data and resulting improvements in learn-
ing general policies.

Acknowledgments
The research of H. Geffner has been supported by the
Alexander von Humboldt Foundation with funds from the
Federal Ministry for Education and Research. The research
has also received funding from the European Research
Council (ERC), Grant agreement No. No 885107, and
Project TAILOR, Grant agreement No. 952215, under EU
Horizon 2020 research and innovation programme, the Ex-
cellence Strategy of the Federal Government and the NRW
Länder, and the Knut and Alice Wallenberg (KAW) Foun-
dation under the WASP program. Resources were also pro-
vided by the National Academic Infrastructure for Super-
computing in Sweden (NAISS) and the Swedish National
Infrastructure for Computing (SNIC) at the National Super-
computer Centre at Linköping University partially funded
by the Swedish Research Council through grant agreements
no. 2022-06725 and no. 2018-05973.

References
Babai, L. 2016. Graph isomorphism in quasipolynomial
time [extended abstract]. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, 684–697.
Association for Computing Machinery.
Bajpai, A. N.; Garg, S.; et al. 2018. Transfer of deep reactive
policies for MDP planning. In Proc. NeurIPS 2018, 10965–
10975.
Belle, V.; and Levesque, H. J. 2016. Foundations for Gener-
alized Planning in Unbounded Stochastic Domains. In Proc.
KR 2016, 380–389.
Bertsekas, D. P. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.
Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning
Features and Abstract Actions for Computing Generalized
Plans. In Proc. AAAI 2019, 2703–2710.
Bonet, B.; and Geffner, H. 2018. Features, Projections, and
Representation Change for Generalized Planning. In Proc.
IJCAI 2018, 4667–4673.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-state Con-
trollers Using Classical Planners. In Proc. ICAPS 2009, 34–
41.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic Dy-
namic Programming for First-Order MDPs. In Proc. IJCAI
2001, 690–700.
Celorrio, S. J.; Segovia-Aguas, J.; and Jonsson, A. 2019. A
review of generalized planning. Knowl. Eng. Rev., 34: e5.
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2023. GOOSE:
Learning Domain-Independent Heuristics. In NeurIPS 2023
Workshop on Generalization in Planning.
Chen, D. Z.; Trevizan, F.; and Thiébaux, S. 2023. Graph
Neural Networks and Graph Kernels For Learning Heuris-
tics: Is there a difference? In NeurIPS 2023 Workshop on
Generalization in Planning.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems,
L.; Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019.
BabyAI: A Platform to Study the Sample Efficiency of
Grounded Language Learning. In Proc. ICLR 2019.

Drexler, D.; Seipp, J.; and Geffner, H. 2022. Learning
Sketches for Decomposing Planning Problems into Sub-
problems of Bounded Width. In Proc. ICAPS 2022, 62–70.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate pol-
icy iteration with a policy language bias: Solving relational
Markov decision processes. Journal of Artificial Intelligence
Research, 25: 75–118.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning Gen-
eral Planning Policies from Small Examples Without Super-
vision. In Proc. AAAI 2021, 11801–11808.
François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare,
M. G.; and Pineau, J. 2018. An Introduction to Deep Re-
inforcement Learning. Foundations and Trends in Machine
Learning.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool
Publishers.
Grohe, M. 2021. The logic of graph neural networks. In
36th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 1–17.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In Proc. ICAPS 2018, 408–
416.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
Proc. IJCAI 2011, 918–923.
Illanes, L.; and McIlraith, S. A. 2019. Generalized Planning
via Abstraction: Arbitrary Numbers of Objects. In Proc.
AAAI 2019, 7610–7618.
Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A Re-
view of Generalized Planning. The Knowledge Engineering
Review, 34: e5.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence, 113: 125–148.
Kirk, R.; Zhang, A.; Grefenstette, E.; and Rocktäschel, T.
2023. A Survey of Zero-shot Generalisation in Deep Rein-
forcement Learning. Journal of Artificial Intelligence Re-
search, 76: 201–264.
Martı́n, M.; and Geffner, H. 2004. Learning General-
ized Policies from Planning Examples Using Concept Lan-
guages. Applied Intelligence, 20(1): 9–19.
McKay, B. D.; and Piperno, A. 2014. Practical graph iso-
morphism, II. Journal of Symbolic Computation, 60: 94–
112.

Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning. In
Proc. IJCAI 2011, 1983–1990.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
AAAI 2011, 1004–1009.
Riddle, P.; Douglas, J.; Barley, M.; and Franco, S. 2016.
Improving Performance by Reformulating PDDL into a
Bagged Representation. In ICAPS 2016 Workshop on
Heuristics and Search for Domain-independent Planning,
28–36.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
Planning With Deep Reinforcement Learning. In ICAPS
Workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL), 16–24.
Sangiorgi, D. 2012. Introduction to Bisimulation and Coin-
duction. Cambridge University Press.
Sanner, S.; and Boutilier, C. 2009. Practical Solution Tech-
niques for First-Order MDPs. Artificial Intelligence, 173(5-
6): 748–788.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Proc. AAAI 2015, 3371–3377.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2017.
Structural Symmetries of the Lifted Representation of Clas-
sical Planning Tasks. In ICAPS 2017 Workshop on Heuris-
tics and Search for Domain-independent Planning, 67–74.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2019. The-
oretical Foundations for Structural Symmetries of Lifted
PDDL Tasks. In Proc. ICAPS 2019, 446–454.
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L. P.; and Katz, M. 2024. Generalized Planning in
PDDL Domains with Pretrained Large Language Models.
In Proc. AAAI 2024, 20256–20264.
Srivastava, S. 2022. Hierarchical Decompositions and Ter-
mination Analysis for Generalized Planning. jair, 77: 1203–
1236.
Srivastava, S. 2023. Hierarchical Decompositions and Ter-
mination Analysis for Generalized Planning. Journal of Ar-
tificial Intelligence Research, 77: 1203–1236.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
Proc. AAAI 2008, 991–997.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence, 175(2): 393–401.
Ståhlberg, S. 2023. Lifted Successor Generation by Maxi-
mum Clique Enumeration. In Proc. ECAI 2023, 2194–2201.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Proc. ICAPS
2022, 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
Proc. KR 2022, 474–483.

Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Learning
General Policies with Policy Gradient Methods. In Proc.
KR 2023.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2024. Learning
General Policies for Classical Planning Domains: Getting
Beyond C2. arXiv:2403.11734 [cs.AI].
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: MIT Press.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. AS-
Nets: Deep Learning for Generalised Planning. Journal of
Artificial Intelligence Research, 68: 1–68.
Wang, C.; Joshi, S.; and Khardon, R. 2008. First Order De-
cision Diagrams for Relational MDPs. Journal of Artificial
Intelligence Research, 31: 431–472.
Yang, R.; Silver, T.; Curtis, A.; Lozano-Pérez, T.; and Kael-
bling, L. P. 2022. PG3: Policy-Guided Planning for Gener-
alized Policy Generation. In Proc. IJCAI 2022, 4686–4692.

