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Linköping University
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Motivation

• We have been looking at two methods for learning general policies

▷ Combinatorial: Explicit pool of features, Min-SAT formulation
▷ GNNs: Features learned to represent value or policy functions via DRL

• Two main issues:

▷ Scalability, in combinatorial setting
▷ Expressivity, in both settings

• Aims of this work:

▷ Exploit state symmetries (isomorphisms) for reducing # of states in training
▷ Use symmetries to eval expressive requirements of planning domains
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Related threads

• Symmetries in planning for pruning search space/change problem rep-
resentation [Pochter et al., 2011, Shleyfman et al., 2015, Riddle et al., 2016,
Sievers et al., 2019]

• General policies: comb. approaches [Khardon, 1999, Mart́ın and Geffner, 2000,
Fern et al., 2006, Srivastava et al., 2008, Jiménez et al., 2019, Francès et al., 2021];
DL and DRL approaches [Toyer et al., 2020, Bajpai et al., 2018, Rivlin et al., 2020,
St̊ahlberg et al., 2023]

• Expressivity: GNNs, 1-WL, description logics, C2 [Morris et al., 2019,
Barceló et al., 2020, Grohe, 2021]; in planning [St̊ahlberg et al., 2024,
Horćık and Š́ır, 2024, Drexler et al., 2024]
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Planning, Generalized Planning

• A planning problem P = ⟨D, I⟩, domainD, instance info I = {Objs, Init,Goal}

• A generalized planning problem Q is set of instances P over same domain D

• A general policy π picks state (π) transitions (s, s′) in each P ∈ Q

• A general policy π solves P if all π-trajectories starting at s0 end in goal state

• A general policy π solves solves Q if it solves all P in Q

Goal atoms p(c1, . . . , ck) encoded in states as pG(c1, . . . , ck) where pG new predicate
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Equivalence-based abstractions

• For learning π to solve Q, look for π that solves some instances from Q

• Number and size of instances required small, but if too small, π won’t generalize

• Idea: prune isomorphic states from instances P ∈ Q

• Let S(P ) = ⟨S, s0, G, Succ⟩ where (s, s′) ∈ Succ if ∃ action that maps s into s′

• Reduced/abstract state model S̃(P ) = ⟨S̃, s̃0, G̃, S̃ucc⟩ from S(P ):

▷ S̃
.
= {[s] | s ∈ S}; where [s] stands for class of states isomorphic to s

▷ [s0] for initial state s0 of P ,

▷ G̃
.
= {[s] | s ∈ G} for the goal states,

▷ S̃ucc
.
= {([s], [s′]) | (s, s′) ∈ Succ}.

Theorem: If π is a first-order policy, π solves Q over first-order STRIPS domain

D iff π solves set of reduced problems Q̃ = {S̃(P ) |P ∈ Q}.
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Example: Equivalence Reduction in Gripper

#A = n ,
#G = 0 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = A

#A = n− 2 ,
#G = 2 ,
L = A

#A = n− 1 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 2 ,
L = B

#A = n− 1 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
L = B

#A = n− 2 ,
#G = 0 ,
L = B

#A = n− 2 ,
#G = 1 ,
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#A = n− 2 ,
#G = 0 ,
L = A
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For n balls, |S| is exponential in n, while |S̃| is 6n
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Experiments: Gains with equivalence reduction

with equivalence-based reduction without equivalence-based reduction

Domain M Tpre Tlearn QT /∼iso M Tpre Tlearn QT

Blocks3ops 9 537 6,876 4,901 9 992 71,299 145,680

Blocks4ops-clear 1 2 3 86 1 4 71 30,540

Blocks4ops-on 2 60 185 249 3 192 301 30,540

Delivery 1 166 290 3,346 3 820 15,355 411,720

Ferry 1 14 70 265 1 20 41 8,430

Gripper 1 4 2 90 1 3 7 1,084

Miconic 1 40 37 17,661 1 10 77 32,400

Reward 1 23 26 7,026 1 5 93 13,394

Spanner 1 3 3 525 1 3 5 9,291

Visitall 2 1,761 14,163 446,005 2 46 15,487 476,766

Learning gen policies with/without reductions; combinatorial approach

Memory in GiB (M), time in secs: preprocessing (Tpre), training/validation (Tlearn)

Total number of states in training set (QT ), and reduced set (QT /∼iso)
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How state symmetries computed?

States s mapped into vertex-colored graphs G(s) = (V,E, λ) with

• vertices v= ⟨c⟩ with color λ(v)=⊥ for constants c in s,

• vertices v= ⟨q, i⟩ for all atoms q = p(c1, . . . , ck) in s, i ≤ k, color λ(v)= ⟨p, i⟩,
• edges connect vertices ⟨q, i⟩ and ⟨ci⟩ iff q = p(c1, . . . , ck)

• edges connect vertices ⟨q, i⟩ and ⟨q, i + 1⟩ iff q = p(c1, . . . , ck) and i + 1 ≤ k

Theorem: s∼iso s
′ iff G(s)∼isoG(s′)

State-of-the-art code (nauty) to determine if graphs G(s) and G(s′) isomorphic
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Expressivity Requirement of Planning Domains

• General policies see states through features; no object or action names

• GNN, 1-WL, and C2 features don’t distinguish all non-isomorphic states

• 1-WL distinguishes s and s′, s ̸∼wl s
′, if Hist(G(s)) ̸= Hist(G(s′))

• If 1-WL doesn’t distinguish s and s′, nor will GNNs or description logics. Let:

▷ E-conflicts: s ̸∼wl s
′ and s ̸∼iso s

′

▷ V-conflicts: s ̸∼wl s
′ and V (s) ̸= V (s′)′ (related to [Horćık and Š́ır, 2024])

• V-conflict implies that GNN can’t learn V ∗ in training set

• E-conflict implies potential V-conflict
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Experimental Results: Expressivity Requirements

1-WL 1-WL + G

Domain #Q #S #S/∼iso #E #V #E #V

Barman 510 115 M 38 M 1,326 537 1,062 273
Blocks3ops 600 146 K 133 K 50 20 25 0
Blocks4ops 600 122 K 110 K 54 27 27 0
Blocks4ops-clear 120 31 K 3 K 0 0 0 0
Blocks4ops-on 150 31 K 8 K 0 0 0 0
Childsnack 30 58 K 5 K 0 0 0 0
Delivery 540 412 K 62 K 0 0 0 0
Ferry 180 8 K 4 K 36 36 0 0
Grid 1,799 438 K 370 K 42 38 24 20
Gripper 5 1 K 90 0 0 0 0
Hiking 720 44 M 5 M 0 0 0 0
Logistics 720 69 K 38 K 131 131 94 94
Miconic 360 32 K 22 K 0 0 0 0
Reward 240 14 K 11 K 0 0 0 0
Rovers 514 39 M 34 M 0 0 0 0
Satellite 960 14 M 8 M 5,304 4,226 1,708 762
Spanner 270 9 K 4 K 0 0 0 0
Visitall 660 3 M 2 M 0 0 0 0

#Q is # number of instances; #S, #S/∼iso: # states and partitions. ”G” adds predicate p′(x, y) iff p(x, y) and

pG(x, y) true. #E and #V: # of E and V-conflicts.
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GNN + RL for General Policies [St̊ahlberg et al., 2023]

Domain Coverage (%) Domain Coverage (%)

Blocks 100% Delivery 100%

Gripper 100% Miconic 100%

Visitall 100% Grid 70%
Logistics 36% Spanner 68%

• Nearly perfect general policies obtained in several domains (100%)

• But interesting part is in the failures:

▷ GNN expressivity not enough

▷ Generality-optimality tradeoff

• Indeed, 1-WL/GNNs can’t distinguish pair of states:
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Summary

• Two methods for learning general policies

▷ Combinatorial: Explicit pool of features, Min-SAT formulation
▷ GNNs: Features learned to represent value or policy functions via DRL

• Two limitations:

▷ Scalability, in combinatorial setting
▷ Expressivity in both settings

• Computing symmetries

▷ Mapping states into graphs that preserve isomorphisms
▷ Using state-of-the-art codes for testing graph isomorphism

• Results so far:

▷ Savings in combinatorial setting
▷ Expressive requirements assessed (not in PRL paper though)

• Challenge of obtaining general policies for difficult but tractable domains

▷ e.g., N-puzzle, Sokoban (fragments), Pushworld (fragments), etc.
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