Equivalence-Based Abstractions for Learning General Policies

Dominik Drexler, Simon Ståhlberg Blai Bonet, Hector Geffner PRL Workshop, ICAPS, 2024

> Hector Geffner RWTH Aachen University Aachen, Germany

> > Linköping University Linköping, Sweden

Motivation

• We have been looking at two methods for learning general policies

- \triangleright **Combinatorial:** Explicit pool of features, Min-SAT formulation
- **▷ GNNs:** Features learned to represent value or policy functions via DRL
- Two main issues:
	- \triangleright Scalability, in combinatorial setting
	- \triangleright Expressivity, in both settings
- Aims of this work:
	- \triangleright Exploit state symmetries (isomorphisms) for reducing $\#$ of states in training
	- \triangleright Use symmetries to eval expressive requirements of planning domains

Related threads

- Symmetries in planning for pruning search space/change problem representation [\[Pochter et al., 2011,](#page-13-0) [Shleyfman et al., 2015,](#page-13-1) [Riddle et al., 2016,](#page-13-2) [Sievers et al., 2019\]](#page-13-3)
- General policies: comb. approaches [\[Khardon, 1999,](#page-12-0) Martín and Geffner, 2000, [Fern et al., 2006,](#page-12-2) [Srivastava et al., 2008,](#page-13-4) Jiménez et al., 2019, Francès et al., 2021]; DL and DRL approaches [\[Toyer et al., 2020,](#page-13-5) [Bajpai et al., 2018,](#page-12-5) [Rivlin et al., 2020,](#page-13-6) Ståhlberg et al., 2023]
- Expressivity: GNNs, 1-WL, description logics, C2 [\[Morris et al., 2019,](#page-12-6) Barceló et al., 2020, [Grohe, 2021\]](#page-12-8); in planning [Ståhlberg et al., 2024, Horcík and Šír, 2024, [Drexler et al., 2024\]](#page-12-10)

Planning, Generalized Planning

- A planning problem $P = \langle D, I \rangle$, domain D, instance info $I = \{Objs,Init, Goal\}$
- A generalized planning problem $\mathcal Q$ is set of instances P over same domain D
- A general policy π picks state (π) transitions (s, s') in each $P \in \mathcal{Q}$
- A general policy π solves P if all π -trajectories starting at s_0 end in goal state
- A general policy π solves solves Q if it solves all P in Q

Goal atoms $p(c_1, \ldots, c_k)$ encoded in states as $p_G(c_1, \ldots, c_k)$ where p_G new predicate

Equivalence-based abstractions

- For learning π to solve $\mathcal Q$, look for π that solves some instances from $\mathcal Q$
- Number and size of instances required small, but if too small, π won't generalize
- Idea: prune isomorphic states from instances $P \in Q$
- Let $S(P) = \langle S, s_0, G, Succ \rangle$ where $(s, s') \in Succ$ if \exists action that maps s into s'
- Reduced/abstract state model $\widetilde{S(P)} = \langle \widetilde{S}, \widetilde{s}_0, \widetilde{G}, \widetilde{Succ} \rangle$ from $S(P)$:
	- $\triangleright \; \tilde{S} \dot = \{ [s] \; | \; s \in S \};$ where $[s]$ stands for class of states isomorphic to s
	- \triangleright $[s_0]$ for initial state s_0 of P,
	- $\triangleright \ \tilde{G} \doteq \{ [s] \mid s \in G \}$ for the goal states,
	- \triangleright $\widetilde{\mathsf{Succ}} \doteq \{([s], [s]$ $') | (s, s') \in$ Succ}.

Theorem: If π is a *first-order* policy, π solves Q over *first-order* STRIPS domain D iff π solves set of reduced problems $\tilde{Q} = \{S(P) | P \in Q\}$.

Example: Equivalence Reduction in Gripper

For *n* balls, $|S|$ is exponential in *n*, while $|\tilde{S}|$ is $6n$

Experiments: Gains with equivalence reduction

Learning gen policies with/without reductions; combinatorial approach

Memory in GiB (M), time in secs: preprocessing (T_{pre}) , training/validation (T_{learn})

Total number of states in training set $(\mathcal{Q}_\mathcal{T})$, and reduced set $(\mathcal{Q}_\mathcal{T}/\!\!\sim_{iso})$

How state symmetries computed?

States s mapped into vertex-colored graphs $G(s) = (V, E, \lambda)$ with

- vertices $v = \langle c \rangle$ with color $\lambda(v) = \bot$ for constants c in s,
- vertices $v = \langle q, i \rangle$ for all atoms $q = p(c_1, \ldots, c_k)$ in $s, i \leq k$, color $\lambda(v) = \langle p, i \rangle$,
- edges connect vertices $\langle q, i \rangle$ and $\langle c_i \rangle$ iff $q = p(c_1, \ldots, c_k)$
- edges connect vertices $\langle q, i \rangle$ and $\langle q, i + 1 \rangle$ iff $q = p(c_1, \ldots, c_k)$ and $i + 1 \leq k$

Theorem: $s \sim_{iso} s'$ iff $G(s) \sim_{iso} G(s')$

State-of-the-art code (nauty) to determine if graphs $G(s)$ and $G(s^\prime)$ isomorphic

Expressivity Requirement of Planning Domains

- General policies see states through features; no object or action names
- GNN, 1-WL, and C2 features don't distinguish all non-isomorphic states
- 1-WL distinguishes s and s', s $\not\sim_{\text{wl}} s'$, if $\textsf{Hist}(G(s)) \neq \textsf{Hist}(G(s'))$
- If 1-WL doesn't distinguish s and s' , nor will GNNs or description logics. Let:
	- \triangleright E-conflicts: $s \not\sim_{\textsf{\tiny{wl}}} s'$ and $s \not\sim_{iso} s'$
	- ⊳ ∨-conflicts: $s \not\sim_{\sf wI} s'$ and $V(s) \neq V(s')'$ (related to [Horcík and Šír, 2024])
- V-conflict implies that GNN can't learn V^* in training set
- E-conflict implies potential V-conflict

Experimental Results: Expressivity Requirements

 $\#\mathcal{Q}$ is $\#$ number of instances; $\#\mathcal{S}$, $\#\mathcal{S}/\!\!\sim_{iso}:\#$ states and partitions. "G" adds predicate $p'(x,y)$ iff $p(x,y)$ and $p_G(x, y)$ true. $\#\mathsf{E}$ and $\#\mathsf{V}: \#$ of $\mathsf E$ and V-conflicts.

$GNN + RL$ for General Policies [Ståhlberg et al., 2023]

- Nearly perfect general policies obtained in several domains (100%)
- But interesting part is in the failures:
	- \triangleright GNN expressivity not enough
	- \triangleright Generality-optimality tradeoff
- Indeed, 1-WL/GNNs can't distinguish pair of states:

Summary

- Two methods for learning general policies
	- ▷ Combinatorial: Explicit pool of features, Min-SAT formulation
	- **▷ GNNs:** Features learned to represent value or policy functions via DRL
- Two limitations:
	- \triangleright Scalability, in combinatorial setting
	- \triangleright Expressivity in both settings
- **Computing** symmetries
	- \triangleright Mapping states into graphs that preserve isomorphisms
	- \triangleright Using state-of-the-art codes for testing graph isomorphism
- Results so far:
	- \triangleright Savings in combinatorial setting
	- \triangleright Expressive requirements assessed (not in PRL paper though)
- Challenge of obtaining general policies for difficult but tractable domains ▷ e.g., N-puzzle, Sokoban (fragments), Pushworld (fragments), etc.

References

- [Bajpai et al., 2018] Bajpai, A. N., Garg, S., et al. (2018). Transfer of deep reactive policies for mdp planning. In Proc. NeurIPS 2018, pages 10965–10975.
- [Barceló et al., 2020] Barceló, P., Kostylev, E., Monet, M., Pérez, J., Reutter, J., and Silva, J.-P. (2020). The logical expressiveness of graph neural networks. In Proc. ICLR 2020.
- [Drexler et al., 2024] Drexler, D., Ståhlberg, S., Bonet, B., and Geffner, H. (2024). Symmetries and expreessive requirements for learning general policies.
- [Fern et al., 2006] Fern, A., Yoon, S., and Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving relational markov decision processes. JAIR, 25:75–118.
- [Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning policies from small examples without supervision. In Proc. AAAI 2021, pages 11801–11808.
- [Grohe, 2021] Grohe, M. (2021). The logic of graph neural networks. In Proceedings of the Thirty-Sixth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2021), pages 1–17.
- [Horcík and Šír, 2024] Horcík, R. and Šír, G. (2024). Expressiveness of graph neural networks in planning domains. In Proc. ICAPS.
- [Jiménez et al., 2019] Jiménez, S., Segovia-Aguas, J., and Jonsson, A. (2019). A review of generalized planning. The Knowledge Engineering Review, 34:e5.
- [Khardon, 1999] Khardon, R. (1999). Learning action strategies for planning domains. AI, 113:125–148.
- [Martín and Geffner, 2000] Martín, M. and Geffner, H. (2000). Learning generalized policies from planning examples using concept languages. In Proc. KR.
- [Morris et al., 2019] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order graph neural networks. In Proc. AAAI 2019, pages 4602–4609.
- [Pochter et al., 2011] Pochter, N., Zohar, A., and Rosenschein, J. S. (2011). Exploiting problem symmetries in state-based planners. In Proc. AAAI 2011, pages 1004–1009.
- [Riddle et al., 2016] Riddle, P., Douglas, J., Barley, M., and Franco, S. (2016). Improving performance by reformulating PDDL into a bagged representation. In ICAPS 2016 Workshop on Heuristics and Search for Domain-independent Planning, pages 28–36.
- [Rivlin et al., 2020] Rivlin, O., Hazan, T., and Karpas, E. (2020). Generalized planning with deep reinforcement learning. In ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), pages 16–24.
- [Shleyfman et al., 2015] Shleyfman, A., Katz, M., Helmert, M., Sievers, S., and Wehrle, M. (2015). Heuristics and symmetries in classical planning. In Proc. AAAI 2015, pages 3371–3377.
- [Sievers et al., 2019] Sievers, S., Röger, G., Wehrle, M., and Katz, M. (2019). Theoretical foundations for structural symmetries of lifted PDDL tasks. In Proc. ICAPS 2019, pages 446–454.
- [Srivastava et al., 2008] Srivastava, S., Immerman, N., and Zilberstein, S. (2008). Learning generalized plans using abstract counting. In Proc. AAAI 2008, pages 991–997.
- [Ståhlberg et al., 2023] Ståhlberg, S., Bonet, B., and Geffner, H. (2023). Learning general policies with policy gradient methods. In Proc. KR 2023.
- [Ståhlberg et al., 2024] Ståhlberg, S., Bonet, B., and Geffner, H. (2024). Learning general policies for classical planning domains: Getting beyond c $\text{-}2$. arXiv preprint arXiv:2403.11734.
- [Toyer et al., 2020] Toyer, S., Thiébaux, S., Trevizan, F., and Xie, L. (2020). ASNets: Deep learning for generalised planning. Journal of Artificial Intelligence Research, 68:1–68.