Equivalence-Based Abstractions for Learning General Policies

Dominik Drexler, Simon Ståhlberg Blai Bonet, Hector Geffner PRL Workshop, ICAPS, 2024

> Hector Geffner RWTH Aachen University Aachen, Germany

> > Linköping University Linköping, Sweden

Motivation

- We have been looking at **two methods** for learning general policies
 - **Combinatorial:** Explicit pool of features, Min-SAT formulation
 - **GNNs:** Features learned to represent value or policy functions via DRL
- Two main issues:
 - Scalability, in combinatorial setting
 - Expressivity, in both settings
- Aims of this work:
 - ▶ Exploit state symmetries (isomorphisms) for reducing # of states in training
 - Use symmetries to eval expressive requirements of planning domains

Related threads

- Symmetries in planning for pruning search space/change problem representation [Pochter et al., 2011, Shleyfman et al., 2015, Riddle et al., 2016, Sievers et al., 2019]
- General policies: comb. approaches [Khardon, 1999, Martín and Geffner, 2000, Fern et al., 2006, Srivastava et al., 2008, Jiménez et al., 2019, Francès et al., 2021]; DL and DRL approaches [Toyer et al., 2020, Bajpai et al., 2018, Rivlin et al., 2020, Ståhlberg et al., 2023]
- Expressivity: GNNs, 1-WL, description logics, C2 [Morris et al., 2019, Barceló et al., 2020, Grohe, 2021]; in planning [Ståhlberg et al., 2024, Horcík and Šír, 2024, Drexler et al., 2024]

Planning, Generalized Planning

- A planning problem $P = \langle D, I \rangle$, **domain** D, instance info $I = \{Objs, Init, Goal\}$
- A generalized planning problem Q is set of instances P over same domain D
- A general policy π picks state (π) transitions (s, s') in each $P \in \mathcal{Q}$
- A general policy π solves P if all π -trajectories starting at s_0 end in goal state
- A general policy π solves solves \mathcal{Q} if it solves all P in \mathcal{Q}

Goal atoms $p(c_1, \ldots, c_k)$ encoded in states as $p_G(c_1, \ldots, c_k)$ where p_G new predicate

Equivalence-based abstractions

- For learning π to solve $\mathcal Q$, look for π that solves some instances from $\mathcal Q$
- Number and size of instances required small, but if too small, π won't generalize
- Idea: prune isomorphic states from instances $P \in Q$
- Let $S(P) = \langle S, s_0, G, Succ \rangle$ where $(s, s') \in Succ$ if \exists action that maps s into s'
- Reduced/abstract state model $\widetilde{S(P)} = \langle \tilde{S}, \tilde{s}_0, \tilde{G}, \widetilde{Succ} \rangle$ from S(P):
 - ▷ $\tilde{S} \doteq \{ [s] \mid s \in S \}$; where [s] stands for class of states **isomorphic** to s
 - \triangleright $[s_0]$ for initial state s_0 of P,
 - ▷ $\tilde{G} \doteq \{ [s] \mid s \in G \}$ for the goal states,
 - $\triangleright \quad \widetilde{\mathsf{Succ}} \doteq \{ ([s], [s']) \mid (s, s') \in \mathsf{Succ} \}.$

Theorem: If π is a *first-order* policy, π solves \mathcal{Q} over *first-order* STRIPS domain D iff π solves set of reduced problems $\tilde{\mathcal{Q}} = \{\widetilde{S(P)} \mid P \in Q\}$.

Example: Equivalence Reduction in Gripper

For n balls, |S| is exponential in n, while $|\tilde{S}|$ is 6n

Experiments: Gains with equivalence reduction

	with equivalence-based reduction				without equivalence-based reduction			
Domain	Μ	T_{pre}	T_{learn}	$\mathcal{Q}_{\mathcal{T}}/\!\!\sim_{iso}$	Μ	T_{pre}	T_{learn}	$\mathcal{Q}_{\mathcal{T}}$
Blocks3ops	9	537	6,876	4,901	9	992	71,299	145,680
Blocks4ops-clear	1	2	3	86	1	4	71	30,540
Blocks4ops-on	2	60	185	249	3	192	301	30,540
Delivery	1	166	290	3,346	3	820	15,355	411,720
Ferry	1	14	70	265	1	20	41	8,430
Gripper	1	4	2	90	1	3	7	1,084
Miconic	1	40	37	17,661	1	10	77	32,400
Reward	1	23	26	7,026	1	5	93	13,394
Spanner	1	3	3	525	1	3	5	9,291
Visitall	2	1,761	14,163	446,005	2	46	15,487	476,766

Learning gen policies with/without reductions; combinatorial approach

Memory in GiB (M), time in secs: preprocessing (T_{pre}) , training/validation (T_{learn})

Total number of states in training set (Q_T) , and reduced set (Q_T/\sim_{iso})

How state symmetries computed?

States s mapped into vertex-colored graphs $G(s) = (V, E, \lambda)$ with

- vertices $v = \langle c \rangle$ with color $\lambda(v) = \bot$ for constants c in s,
- vertices $v = \langle q, i \rangle$ for all atoms $q = p(c_1, \ldots, c_k)$ in $s, i \leq k$, color $\lambda(v) = \langle p, i \rangle$,
- edges connect vertices $\langle q, i \rangle$ and $\langle c_i \rangle$ iff $q = p(c_1, \ldots, c_k)$
- edges connect vertices $\langle q, i \rangle$ and $\langle q, i+1 \rangle$ iff $q = p(c_1, \ldots, c_k)$ and $i+1 \leq k$

Theorem: $s \sim_{iso} s'$ iff $G(s) \sim_{iso} G(s')$

State-of-the-art code (nauty) to determine if graphs G(s) and G(s') isomorphic

Expressivity Requirement of Planning Domains

- General policies see states through **features**; no object or action names
- GNN, 1-WL, and C2 features don't distinguish all non-isomorphic states
- 1-WL distinguishes s and s', $s \not\sim_{wl} s'$, if $Hist(G(s)) \neq Hist(G(s'))$
- If 1-WL doesn't distinguish s and s', nor will GNNs or description logics. Let:
 - \triangleright E-conflicts: $s \not\sim_{wl} s'$ and $s \not\sim_{iso} s'$
 - ▷ **V-conflicts:** $s \not\sim_{wl} s'$ and $V(s) \neq V(s')'$ (related to [Horcík and Šír, 2024])
- V-conflict implies that GNN can't learn V^* in training set
- E-conflict implies potential V-conflict

Experimental Results: Expressivity Requirements

				1-WL		1-WL + G	
Domain	$\#\mathcal{Q}$	$\#\mathcal{S}$	$\# S/\sim_{iso}$	#E	#V	#E	#V
Barman	510	115 M	38 M	1,326	537	1,062	273
Blocks3ops	600	146 K	133 K	50	20	25	0
Blocks4ops	600	122 K	110 K	54	27	27	0
Blocks4ops-clear	120	31 K	3 K	0	0	0	0
Blocks4ops-on	150	31 K	8 K	0	0	0	0
Childsnack	30	58 K	5 K	0	0	0	0
Delivery	540	412 K	62 K	0	0	0	0
Ferry	180	8 K	4 K	36	36	0	0
Grid	1,799	438 K	370 K	42	38	24	20
Gripper	5	1 K	90	0	0	0	0
Hiking	720	44 M	5 M	0	0	0	0
Logistics	720	69 K	38 K	131	131	94	94
Miconic	360	32 K	22 K	0	0	0	0
Reward	240	14 K	11 K	0	0	0	0
Rovers	514	39 M	34 M	0	0	0	0
Satellite	960	14 M	8 M	5,304	4,226	1,708	762
Spanner	270	9 K	4 K	0	0	0	0
Visitall	660	3 M	2 M	0	0	0	0

#Q is # number of instances; #S, $\#S/\sim_{iso}$: # states and partitions. "G" adds predicate p'(x, y) iff p(x, y) and $p_G(x, y)$ true. #E and #V: # of E and V-conflicts.

GNN + **RL** for General Policies [Ståhlberg et al., 2023]

Domain	Coverage (%)	Domain	Coverage (%)
Blocks	100%	Delivery	100%
Gripper	100%	Miconic	100%
Visitall	100%	Grid	70%
Logistics	36%	Spanner	68%

- Nearly **perfect general policies** obtained in several domains (100%)
- But interesting part is in the failures:
 - ▷ GNN expressivity not enough
 - Generality-optimality tradeoff
- Indeed, 1-WL/GNNs can't distinguish pair of states:

Summary

- **Two methods** for learning general policies
 - Combinatorial: Explicit pool of features, Min-SAT formulation
 - GNNs: Features learned to represent value or policy functions via DRL
- Two limitations:
 - Scalability, in combinatorial setting
 - Expressivity in both settings
- **Computing** symmetries
 - Mapping states into graphs that preserve isomorphisms
 - Using state-of-the-art codes for testing graph isomorphism
- **Results** so far:
 - Savings in combinatorial setting
 - Expressive requirements assessed (not in PRL paper though)
- Challenge of obtaining general policies for difficult but tractable domains
 e.g., N-puzzle, Sokoban (fragments), Pushworld (fragments), etc.

References

- [Bajpai et al., 2018] Bajpai, A. N., Garg, S., et al. (2018). Transfer of deep reactive policies for mdp planning. In Proc. NeurIPS 2018, pages 10965–10975.
- [Barceló et al., 2020] Barceló, P., Kostylev, E., Monet, M., Pérez, J., Reutter, J., and Silva, J.-P. (2020). The logical expressiveness of graph neural networks. In *Proc. ICLR 2020*.
- [Drexler et al., 2024] Drexler, D., Ståhlberg, S., Bonet, B., and Geffner, H. (2024). Symmetries and expreessive requirements for learning general policies.
- [Fern et al., 2006] Fern, A., Yoon, S., and Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving relational markov decision processes. *JAIR*, 25:75–118.
- [Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning policies from small examples without supervision. In *Proc. AAAI 2021*, pages 11801–11808.
- [Grohe, 2021] Grohe, M. (2021). The logic of graph neural networks. In *Proceedings of the Thirty-Sixth Annual* ACM/IEEE Symposium on Logic in Computer Science (LICS 2021), pages 1–17.
- [Horcík and Šír, 2024] Horcík, R. and Šír, G. (2024). Expressiveness of graph neural networks in planning domains. In *Proc. ICAPS*.
- [Jiménez et al., 2019] Jiménez, S., Segovia-Aguas, J., and Jonsson, A. (2019). A review of generalized planning. *The Knowledge Engineering Review*, 34:e5.
- [Khardon, 1999] Khardon, R. (1999). Learning action strategies for planning domains. Al, 113:125–148.
- [Martín and Geffner, 2000] Martín, M. and Geffner, H. (2000). Learning generalized policies from planning examples using concept languages. In *Proc. KR*.
- [Morris et al., 2019] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proc. AAAI 2019*, pages 4602–4609.

- [Pochter et al., 2011] Pochter, N., Zohar, A., and Rosenschein, J. S. (2011). Exploiting problem symmetries in state-based planners. In *Proc. AAAI 2011*, pages 1004–1009.
- [Riddle et al., 2016] Riddle, P., Douglas, J., Barley, M., and Franco, S. (2016). Improving performance by reformulating PDDL into a bagged representation. In *ICAPS 2016 Workshop on Heuristics and Search for Domain-independent Planning*, pages 28–36.
- [Rivlin et al., 2020] Rivlin, O., Hazan, T., and Karpas, E. (2020). Generalized planning with deep reinforcement learning. In ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), pages 16–24.
- [Shleyfman et al., 2015] Shleyfman, A., Katz, M., Helmert, M., Sievers, S., and Wehrle, M. (2015). Heuristics and symmetries in classical planning. In *Proc. AAAI 2015*, pages 3371–3377.
- [Sievers et al., 2019] Sievers, S., Röger, G., Wehrle, M., and Katz, M. (2019). Theoretical foundations for structural symmetries of lifted PDDL tasks. In *Proc. ICAPS 2019*, pages 446–454.
- [Srivastava et al., 2008] Srivastava, S., Immerman, N., and Zilberstein, S. (2008). Learning generalized plans using abstract counting. In *Proc. AAAI 2008*, pages 991–997.
- [Ståhlberg et al., 2023] Ståhlberg, S., Bonet, B., and Geffner, H. (2023). Learning general policies with policy gradient methods. In Proc. KR 2023.
- [Ståhlberg et al., 2024] Ståhlberg, S., Bonet, B., and Geffner, H. (2024). Learning general policies for classical planning domains: Getting beyond c _2. arXiv preprint arXiv:2403.11734.
- [Toyer et al., 2020] Toyer, S., Thiébaux, S., Trevizan, F., and Xie, L. (2020). ASNets: Deep learning for generalised planning. *Journal of Artificial Intelligence Research*, 68:1–68.