Learning Sketches for Decomposing Planning Problems into Subproblems of Bounded Width

Dominik Drexler¹ Jendrik Seipp¹ Hector Geffner^{2,1}

¹Linköping University ² ICREA & Universitat Pompeu Fabra

Motivation

Two important question in Planning (and RL) are:

1. What is a **good** language for representing the subgoal structure? \rightarrow Policy sketches 2. How to learn the subgoal structure for family of tasks? \rightarrow In this paper

Example: Width-1 Sketch for Delivery

- Domain-general features:
- *H*: holding a package?
- *n*: number of undelivered packages
- Sketch rules:
- : pick undelivered package $\{\neg H\} \mapsto \{H\}$
- $\{H, n > 0\} \mapsto \{\neg H, n\downarrow\}$: decrease # undelivered packages

Learning Width-k Sketches

• Given:

- Training instances $\mathcal{P} = \{P_i\}_{i=1}^n$
- Feature pool \mathcal{F} , automatically constructed from \mathcal{P}
- Bound on sketch width k, number of rules m
- Find: sketch R_{Φ} that consists of *m* rules over features $\Phi \subseteq \mathcal{F}$
- Sketch is simple: $\min_{\Phi \in 2^{\mathcal{F}}} \sum_{f \in \Phi} \operatorname{complexity}(f)$
- Sketch terminates: R_{Φ} is acyclic in each P_i
- Each subproblem is easy: each $P[s, G_{R_{\oplus}}(s)]$ has width $\leq k$
- Implementation as answer set program in Clingo

Conclusion

- Learned sketches can be used to solve whole domains in polynomial time where domain-independent planners fail
- Generalization **tested** empirically and **proven** theoretically

First general method for learning how to decompose planning problems into subproblems with a polynomial complexity that is controlled with a parameter

Take a picture to download the full paper