
Alternation-Based Novelty Search

Augusto B. Corrêa1,2, Jendrik Seipp3

1University of Oxford, United Kingdom
2University of Basel, Switzerland

3Linköping University, Sweden
augusto.blaascorrea@chch.ox.ac.uk, jendrik.seipp@liu.se

Abstract

One key decision for heuristic search algorithms is how to
balance exploration and exploitation. In classical planning,
the two strongest approaches for this problem are to alter-
nate between different heuristics and to enhance heuristics
with novelty measures. The most well-known planner using
alternation is LAMA, which cycles between different open-
lists that are ordered using different heuristics. The strongest
novelty-based algorithms use best-first width search (BFWS),
which prefers states that contain previously unseen combina-
tions of atoms. Considerable effort has been put into trying
to combine these two approaches, but so far, no combina-
tion has been able to significantly improve over the individual
planners. In this paper, we explore the simple idea of using
BFWS as just another open-list for LAMA. Our results show
that adding even the strongest BFWS version to LAMA is
detrimental. However, combining only parts of each approach
yields a new state-of-the-art agile planner.

Introduction
Agile planning involves solving planning tasks as fast as
possible, with little or no consideration for plan quality.
While this might not be suitable for some applications, it
is still an important setting in general, and it is closely re-
lated to the problem of deciding plan existence (e.g., By-
lander 1994). Since 2014, there have been dedicated tracks
for agile planning in the classical part of the International
Planning Competition (IPC). Usually, planners are given five
minutes per task, and they are scored based on how quickly
they solve the task.

In the recent IPC 2023, LAMA (Richter and Westphal
2010),1 a 15 year-old planner that was included as a base-
line, obtained a higher total agile score than all actual com-
petitors, including the winner DecStar (Gnad, Torralba, and
Shleyfman 2023). A similar situation occurred in the IPC
2018, where the LAMA baseline scored second place.

LAMA uses preferred operators and deferred evaluation
(Richter and Helmert 2009), and multiple open-lists (Röger
and Helmert 2010). Alternating between the open-lists al-
lows LAMA to balance between multiple heuristic estimates
and let it win the Satisficing Track of the IPC in 2008. Even

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Throughout the paper, “LAMA” refers to its first iteration.

though the LAMA code base is continuously improved, the
core behavior remains unchanged. This raises the question
of how we can advance the state of the art and obtain a plan-
ner that finds plans faster than LAMA.

In the IPC 2018 Agile Track, the only planner to outper-
form LAMA was based on best-first width search (BFWS)
(Lipovetzky and Geffner 2017; Francès et al. 2018). The
idea of BFWS is to favor states that are novel (Lipovet-
zky and Geffner 2012). The novelty of a state is the size
of the smallest set of atoms that has not been part of any
previously evaluated state. When combined with heuristic
estimates, BFWS achieves a good exploration-exploitation
trade-off which helps find plans quickly.

In this paper, we aim to combine the advantages of LAMA
and BFWS. It turns out though, that this combination ac-
tually yields a worse planner than LAMA and BFWS(f6)
alone. However, a detailed ablation study reveals that re-
moving features from BFWS drastically speeds up the plan-
ner. In fact, discarding partition functions and tie-breakers
from BFWS(f6), improves the coverage and IPC agile score
compared to the original systems. Additionally, we show a
method that identifies when to use lower width based solely
on the structure of the task. This greatly improves the perfor-
mance of BFWS and related algorithms for tasks with many
variables. Our planner also outperforms all agile competitors
of the last IPCs by a large margin, with an IPC agile score
17% higher than the winner of IPC 2023.

Background
A state space is a tuple S = ⟨S, sI , G, succ⟩, where S is
a set of states, sI ∈ S is the initial state, G is the goal
description, succ is a successor function mapping each state
to a finite (possible empty) set of successor states. A state is
a set of (ground) atoms. It is sufficient to consider S as the
minimal set where sI ∈ S, and succ(s) ⊆ S for each s ∈ S.
The goal G is also a set of (ground) atoms. A state s∗ is a
goal state if G ⊆ s∗.

A sequence of states τ = ⟨s0, . . . , sn⟩ is a path from s0
to sn in S if si ∈ succ(si−1) for i ∈ {1, . . . , n}. Path τ is an
s-plan if s0 = s and G ⊆ sn and a plan for S if s0 = sI . We
consider agile planning, the problem of computing plans as
fast as possible, without caring about their length.

A common method to find plans is via heuristic search.
A heuristic is a function h : S → R+

0 ∪ {∞}. It estimates



the length of an s-plan for states s ∈ S. Heuristic search
algorithms start from sI and expand states guided by some
heuristic h, preferring states s with low h(s) values. Exam-
ples of strong heuristics for agile planning are hadd (Bonet
and Geffner 2001), hFF (Hoffmann and Nebel 2001), and
hLM (Richter, Helmert, and Westphal 2008). We assume fa-
miliarity with common search algorithms such as greedy
best-first search (Doran and Michie 1966).

Instead of being guided by a heuristic, BFS(w) (Lipovet-
zky and Geffner 2012, 2017) selects states based on their
novelty, preferring states s with low w(s) values. The nov-
elty w(s) of a state s is the size of the smallest set of atoms
A such that s is the first evaluated state that subsumes A.

This simple scheme can be turned into state-of-the-
art best-first width search (BFWS) algorithms by extend-
ing it with partition functions (Lipovetzky and Geffner
2017; Francès et al. 2017, 2018). For BFWS, the nov-
elty w⟨h1,...,hn⟩(s) of a state s given the partition functions
⟨h1, . . . , hn⟩ is the size of the smallest set of atoms A such
that s is the first evaluated state that subsumes A, among
all states s′ visited before s for which hi(s) = hi(s

′) for
1 ≤ i ≤ n. In practice, BFWS planners only evaluate nov-
elty up to a bound k, where usually k = 2. If a state s has no
novel tuple of size k or less, then w(s) = k + 1.

Balancing Exploration and Exploitation
One important design choice of a planner is how it balances
exploration and exploitation. Exploration techniques search
parts of the state space that have not yet been visited, while
exploitation techniques prefer going into parts that are con-
sidered more promising by some metric.

Modern planners usually mix both of them. A common
approach is to keep several open-lists during search, each
one guided by a different heuristic (Röger and Helmert
2010). The simplest yet most successful method for com-
bining multiple open-lists is alternation (Helmert 2006). An
alternation-based search algorithm maintains n open-lists,
where the i-th open-list is ordered by some heuristic hi. We
denote it as [h1, . . . , hn]. The search alternates between the
open-lists in a round-robin fashion: first it expands the best
state according to h1, adds all successors to all (or some of
the) open-lists, then it expands the best state according to h2,
and so on. In iteration n+ 1 it expands from h1 again.

Alternation is one of the main building blocks used by the
LAMA planner (Richter and Westphal 2008, 2010; Richter,
Westphal, and Helmert 2011). LAMA uses four open-lists:
[hFF, hFF

+ , hLM, hLM
+ ], where h+ denotes an open-list ordered

by h but only containing states reached via preferred opera-
tors (Hoffmann and Nebel 2001).

An orthogonal way of combining exploration and ex-
ploitation is by using tiebreakers (Röger and Helmert 2010).
A tiebreaking open-list ⟨h1, . . . , hn⟩ uses a ranking over n
heuristics. It selects states based on hi and, if there is a tie,
breaks this tie using hi+1. It keeps only a single open-list,
but the order of this list is defined by multiple heuristics.
Throughout the paper, we assume that if all h1, . . . , hn are
tied, then remaining ties are broken by g-value. If ties per-
sist, then we assume a FIFO ordering.

While LAMA opted for an alternation open-list, the more
sophisticated versions of BFWS use tiebreaking (Lipovet-
zky and Geffner 2017). BFWS(f ) orders its open-list
by f = ⟨f1, . . . , fn⟩. The strongest version of BFWS
is BFWS(f6), where the open-list is ordered by f6 =
⟨w⟨hLM,hFF⟩, pref , h

LM, w⟨hFF⟩, h
FF⟩, where pref is an in-

dicator function yielding 1 for states reached via a pre-
ferred operator. Simpler versions include BFWS(f4), where
f4 = ⟨w⟨hLM,hFF⟩, h

LM, hFF⟩, and BFWS(f2), where f2 =

⟨w⟨hFF⟩, h
FF⟩.

Experimental Setup
Before we analyze BFWS, LAMA and their combination,
we present the experimental setup used throughout the pa-
per. We implemented all algorithms within the Scorpion
planning system (Seipp, Keller, and Helmert 2020), which is
an extension of Fast Downward (Helmert 2006). Our imple-
mentation uses finite-domain representation (Helmert 2009).

For running our experiments, we use Downward Lab
(Seipp et al. 2017) on AMD EPYC 7742 processors running
at 2.25 GHz. We use the same limits as the IPC 2023 Agile
Track: 5 minutes and 8 GiB of memory per task.

We use two benchmark sets: the set of old IPC tasks con-
sists of 2502 tasks from 51 domains from IPCs 1998–2014,
while the set of new IPC tasks consists of 360 tasks from
17 domains from IPCs 2018 and 2023. We omit the Slith-
erlink domain from the new IPC tasks, as some planners do
not support it. For fairness, we use only the old IPC tasks
to select the best configuration of our planner, because the
new IPC tasks were not available during the development
of the IPC 2018 and 2023 planners we compare to. We use
the new IPC tasks for comparing our strongest algorithm to
state-of-the-art agile planners on unseen tasks.

We use the h2-preprocessor for all planner runs (Alcázar
and Torralba 2015), including the state-of-the-art planners,
and employ three main metrics to evaluate planner per-
formance: coverage, expansion score and agile score.2 For
each metric, the total score is the sum over all tasks. All
benchmarks, code and experiment data are available online
(Corrêa and Seipp 2025).

Analyzing BFWS
We start by analyzing the most crucial parameter of BFWS,
the width value k, by running BFWS(f6) with k = 1 and
k = 2 on the old IPC tasks. The results in the left part
of Table 1 show that BFWS(f6) with k = 1 solves 2228
tasks, while k = 2 solves 2159. While k = 1 has strictly
higher coverage in 14 domains, k = 2 is superior in 4. Ide-
ally, we would like to set k dynamically based on the task
at hand. Looking closer at the results, we see that k = 1 is

2The expansion score is based on the number of expanded
states, while the agile score is based on the runtime (Richter and
Helmert 2009). Performance better than a lower bound (100 states
for expansions and 1 second for runtime) counts as 1. Performance
worse than an upper bound U (106 states for expansions and 300s
for runtime) counts as 0. We interpolate intermediate values with
a logarithmic function: 1 − log(x)/log(U) where x is the number of
expansions/runtime in seconds.



Fixed Dynamic

k=1 k=2 V =10 V =100 V =1000

Coverage 2228 2159 2227 2233 2182
Exp. Score 1909.5 1877.6 1908.3 1909.7 1886.3
Agile Score 1786.1 1707.3 1785.6 1786.4 1711.5

Table 1: Results for BFWS(f6) using different width values.

preferable for tasks with many state variables, which makes
sense because evaluating the novelty of a state runs in time
O(nk) for tasks with n variables. So we evaluate setting k
based on a threshold V on the number of variables n. If
n ≤ V , we use k = 2, otherwise we use k = 1. We test
V ∈ {10, 100, 1000} and can observe in Table 1 that all dy-
namic choices outperform BFWS with k fixed to 2. In par-
ticular, the best performance in all metrics tested is obtained
with V = 100, which we use for all further experiments.

Combining LAMA and BFWS
LAMA and BFWS present distinct ways of combining ex-
ploration and exploitation but they also share similarities. If
we consider BFWS(f6), then both planners use exactly the
same information (with the exception of the novelty mea-
sures): hFF, hLM, and preferred operators. The difference
is in the way the planners process the information and the
question is how we can combine the advantages of both
in a single planner. Arguably the most direct approach to
combine both planners is to use the tiebreaking open-list of
BFWS(f6) as an additional open-list in LAMA. We call this
modification LAMA-W(f6), and we use the same dynamic
selection of the width as just explained.

The first two columns of Table 2 compare LAMA with
LAMA-W(f6). Despite both achieving the same coverage,
LAMA-W(f6) is much worse than LAMA in the other met-
rics. The low expansion score indicates that the addition of
the new open-list makes the search less informed. This is
somewhat counter-intuitive because in many cases combin-
ing different evaluators within the same search algorithm de-
creases the number of expansions (c.f., Corrêa et al. 2023).

To investigate this, we decompose the features of LAMA-
W(f6). Our first step is to iteratively simplify the new
open-list by removing subsets of its features (partition
functions, tie-breakers). We define the following varia-
tions: 1. LAMA-W(f4), where f4 = ⟨w⟨hLM,hFF⟩, h

LM, hFF⟩;
2. LAMA-W(fh

2 ). where fh
2 = ⟨w⟨h⟩, h⟩. We test two ver-

sions: h = hFF and h = hLM; 3. LAMA-W(w⟨h⟩) uses the
open-list of BFWS(w⟨h⟩) (Lipovetzky and Geffner 2017),
a best-first width search with a single open-list ordered by
w⟨h⟩ and breaking ties by accumulated cost g. Here, we eval-
uate three versions: w⟨hFF⟩, w⟨hLM⟩ and w⟨⟩. The latter does
not use any partition function.

Table 2 and Figure 1 show the results for all methods.
From left to right, the novelty-based open-list becomes in-
creasingly simple. There are two immediate observations
to be made: first, simpler approaches, such as LAMA-
W(fhLM

2 ), perform better than LAMA-W(f6); second, using

0 100 200 300
1,500

1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

Time (s)

C
ov

er
ag

e

LAMA-W(fhLM

2 )
LAMA-W(w⟨hLM⟩)
LAMA-W(f4)
LAMA-W(w⟨⟩)
LAMA-W(f6)
LAMA
LAMA-W(fhFF

2 )
LAMA-W(w⟨hFF⟩)

Figure 1: Coverage over time for our new algorithms on the
old IPC tasks.

hLM in the novelty open-list is consistently superior to hFF.
LAMA-W(fhLM

2 ) improves over LAMA in coverage, and
over LAMA-W(f6) in all three criteria. It is also superior
to BFWS(f6) in coverage and agile scores (see Table 1).

LAMA uses four open-lists, while our new best method,
LAMA-W(fhLM

2 ) uses five. To streamline notation in the
rest of the paper, we refer to this version as NOLAN, as it
uses (among other features) NOvelty, Landmarks and Al-
ternatioN. In exploratory experiments, we tried to simplify
NOLAN using a similar strategy as the one presented in Ta-
ble 2: we started with all five open-lists and tested the effects
of removing different subsets of them. While some subsets
get close to NOLAN, none of them outperforms it.

Table 3 shows a per-domain coverage comparison be-
tween BFWS(f6), LAMA and NOLAN. While BFWS(f6)
and LAMA have their strengths in different domains,
NOLAN is usually preferable to both of them. This shows
that NOLAN’s higher total coverage does not stem from
only one or two domains, but that alternation-based novelty
search increases coverage for a large number of domains.

Related Work
Before we compare NOLAN to state-of-the-art agile plan-
ners, we discuss related work, some of which forms the basis
for some of the planners we compare to.

Balancing exploration and exploitation is a longstand-
ing challenge in classical planning (Hoffmann and Nebel
2001; Richter and Westphal 2008; Nakhost and Müller 2009;
Röger and Helmert 2010; Vidal 2011; Katz et al. 2017; Asai
and Fukunaga 2017; Fickert 2018). In recent years, BFWS
has emerged as the most successful approach for this prob-
lem (Lipovetzky and Geffner 2012, 2017; Francès et al.
2017). We evaluate two representatives, BFWS-Preference
and Dual-BFWS (Francès et al. 2018), in the next section.

Follow-up work combined BFWS with other search tech-
niques. For example, Katz et al. (2017) combine the concept
of novelty with heuristic estimates, extending the definition
of novelty by Shleyfman, Tuisov, and Domshlak (2016) to
take into account the heuristic value of the states. This al-
lows them to quantify how novel a state is, so the search can
be guided directly by this value.



LAMA
LAMA-W(f6 )

LAMA-W(f4 )

LAMA-W(f h FF
2 )

LAMA-W(f h LM
2 )

LAMA-W(w⟨hFF⟩ )

LAMA-W(w⟨hLM⟩ )

LAMA-W(w⟨⟩ )

Coverage 2237 2237 2243 2210 2277 2136 2276 2243
Expansion Score 1794.2 1551.6 1551.9 1516.9 1817.0 1417.0 1806.5 1797.1
Agile Score 1863.9 1769.1 1775.3 1747.2 1888.4 1681.0 1886.3 1868.4

Table 2: Scores for the baselines, LAMA and LAMA-W(f6), and for simplifications of LAMA-W(f6) on the old IPC tasks.

BFWS(f6) LAMA NOLAN

BFWS(f6) — 13 10
LAMA 13 — 2
NOLAN 17 14 —

Table 3: Per-domain coverage comparison for old IPC tasks.

Another successful approach is due to Fickert (2020), who
uses an orthogonal approach to the one by Katz et al.: in-
stead of using novelty as the main guidance for the search,
Fickert uses traditional heuristics to guide a greedy best-
first search, and uses a lookahead strategy to find states with
lower heuristic values quickly. This lookahead strategy is de-
signed to reach states satisfying relaxed subgoals (Lipovet-
zky and Geffner 2014). To make the procedure efficient, he
uses novelty pruning (Lipovetzky and Geffner 2012; Fick-
ert 2018) to reduce the number of evaluated states. Fick-
ert shows that there is a synergy between the novelty-based
lookahead and the hCFF heuristic (Fickert and Hoffmann
2017), as the result from the lookahead can be used to trigger
the refinement procedure of hCFF. This idea was also used in
the OLCFF planner (Fickert and Hoffmann 2018) from the
IPC 2018. We include OLCFF and an improved version of
it, GBFS-RSL, in our empirical comparison below.

State-of-the-Art Agile Planners
We now compare NOLAN to state-of-the-art agile planners
which scored highly in previous IPCs: BFWS-Preference
(Francès et al. 2018), the winner of the Agile Track of IPC
2018; Dual-BFWS (Francès et al. 2018), another BFWS-
based participant of IPC 2018; OLCFF (Fickert and Hoff-
mann 2018), which combines novelty pruning with the hCFF

heuristic (Hoffmann and Fickert 2015); DecStar (Gnad, Tor-
ralba, and Shleyfman 2023), the winner of the IPC 2023 Ag-
ile Track; and Fast Downward Stone Soup 2023 (Büchner
et al. 2023), the runner-up in the IPC 2023 Agile Track. Fur-
thermore, we include LAMA, BFWS(f6) with V = 100,
and GBFS-RSL (Fickert 2020), which is an improved ver-
sion of the OLCFF planner. As explained above, we use the
new IPC set of instances in this experiment for fairness.

Table 4 compares NOLAN with the state-of-the-art plan-
ners.3 NOLAN has the highest coverage and agile score and

3We do not compare expansion scores for this experiment be-
cause some planners perform multiple searches and some use
lookaheads, which skews the total number of expansions.

Coverage Agile Score

NOLAN 204 89.30
LAMA 199 87.25
BFWS(f6) 174 75.57
FDSS 171 76.22
DecStar 167 76.05
GBFS-RSL 142 57.87
BFWS-Pref. 133 63.59
Dual-BFWS 131 57.48
OLCFF 124 52.44

Table 4: Coverage and agile scores on the new IPC tasks.

0 100 200 300

200

150

100

50

Time (s)

C
ov

er
ag

e

NOLAN
LAMA
BFWS(f6)
FDSS
DecStar
GBFS-RSL
BFWS-Pref.
Dual-BFWS
OLCFF

Figure 2: Coverage over time for state-of-the-art agile plan-
ners on the new IPC tasks.

the relative increase in agile score to DecStar, the last winner
of the IPC Agile Track, is about 17%. Figure 2 shows that
NOLAN solves more tasks than all other planners already
after 75 seconds.

Conclusions
We showed how to combine two successful agile planners,
LAMA and BFWS(f6), yielding a planner that is stronger
than its ingredients. We also introduced a new mechanism
to choose the width k of a BFWS based on the structure of
the task. Putting these ideas together, we obtained NOLAN,
which has a higher coverage and agile score than all other
evaluated planners.



Acknowledgments
This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proc. ICAPS 2015, 2–6.
Asai, M.; and Fukunaga, A. 2017. Exploration Among
and Within Plateaus in Greedy Best-First Search. In Proc.
ICAPS 2017, 11–19.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ, 129(1): 5–33.
Büchner, C.; Christen, R.; Corrêa, A. B.; Eriksson, S.; Fer-
ber, P.; Seipp, J.; and Sievers, S. 2023. Fast Downward Stone
Soup 2023. In IPC-10 Planner Abstracts.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. AIJ, 69(1–2): 165–204.
Corrêa, A. B.; Francès, G.; Hecher, M.; Longo, D. M.; and
Seipp, J. 2023. Scorpion Maidu: Width Search in the Scor-
pion Planning System. In IPC-10 Planner Abstracts.
Corrêa, A. B.; and Seipp, J. 2025. Code and experiment
data from the ICAPS 2025 paper “Alternation-Based Nov-
elty Search”. https://doi.org/10.5281/zenodo.15313799.
Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser program. Proceedings of the Royal Society
A, 294: 235–259.
Fickert, M. 2018. Making Hill-Climbing Great Again
through Online Relaxation Refinement and Novelty Prun-
ing. In Proc. SoCS 2018, 158–162.
Fickert, M. 2020. A Novel Lookahead Strategy for Delete
Relaxation Heuristics in Greedy Best-First Search. In Proc.
ICAPS 2020, 119–123.
Fickert, M.; and Hoffmann, J. 2017. Complete Local Search:
Boosting Hill-Climbing through Online Relaxation Refine-
ment. In Proc. ICAPS 2017, 107–115.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In IPC-9 Planner Abstracts, 17–19.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In IPC-9 Planner Ab-
stracts, 23–27.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Representations are Over-
rated: Classical Planning with Simulators. In Proc. IJCAI
2017, 4294–4301.
Gnad, D.; Torralba, Á.; and Shleyfman, A. 2023. DecStar-
2023. In IPC-10 Planner Abstracts.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AIJ, 173: 503–535.

Hoffmann, J.; and Fickert, M. 2015. Explicit Conjunctions
w/o Compilation: Computing hFF(ΠC) in Polynomial Time.
In Proc. ICAPS 2015, 115–119.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR, 14:
253–302.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting Novelty to Classical Planning as Heuristic
Search. In Proc. ICAPS 2017, 172–180.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In Proc. ECAI 2012,
540–545.
Lipovetzky, N.; and Geffner, H. 2014. Width-based Algo-
rithms for Classical Planning: New Results. In Proc. ECAI
2014, 1059–1060.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. AAAI 2017, 3590–3596.
Nakhost, H.; and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proc. IJCAI 2009, 1766–
1771.
Richter, S.; and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proc. ICAPS
2009, 273–280.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proc. AAAI 2008, 975–982.
Richter, S.; and Westphal, M. 2008. The LAMA Planner —
Using Landmark Counting in Heuristic Search. IPC 2008
short papers, http://ipc.informatik.uni-freiburg.de/Planners.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR, 39: 127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 Planner Ab-
stracts, 50–54.
Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. ICAPS 2010, 246–249.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129–
167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind
Search for Atari-Like Online Planning Revisited. In Proc.
IJCAI 2016, 3251–3257.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In IPC
2011 Planner Abstracts, 83–90.


