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Abstract
Determining whether two STRIPS planning instances are isomorphic is the simplest form of
comparison between planning instances. It is also a particular case of the problem concerned with
finding an isomorphism between a planning instance P and a sub-instance of another instance P ′.
One application of such an isomorphism is to efficiently produce a compiled form containing all
solutions to P from a compiled form containing all solutions to P ′. In this paper, we study the
complexity of both problems. We show that the former is GI-complete, and can thus be solved,
in theory, in quasi-polynomial time. While we prove the latter to be NP-complete, we propose
an algorithm to build an isomorphism, when possible. We report extensive experimental trials
on benchmark problems which demonstrate conclusively that applying constraint propagation in
preprocessing can greatly improve the efficiency of a SAT solver.
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1 Introduction

Models used for STRIPS [7] planning encode sizeable state-spaces that can rarely be rep-
resented explicitly, but that have a clear and somewhat regular structure. Parts of this
structure can be, however, common to multiple planning instances, although this similarity
is often far from immediate to identify by looking at the STRIPS representation. Indeed,
finding whether or not an instance P is a sub-instance of another problem P ′ requires to map
every fluent and every operator of P to their counterpart in P ′, while respecting a morphism
property. This requires the exploration of the exponential search space of mappings from
P to P ′. Finding such a mapping, however, allows us to carry over significant pieces of
information from one problem to the other. In particular, any solution-plan for P can then
be translated into a plan for P ′ efficiently.

A classical technique in constraint programming is to store all solutions to a CSP or SAT
instance in a compact compiled form [1]. This is performed off-line. A compilation map
indicates which operations and transformations can be performed in polynomial time during
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the on-line stage [6]. STRIPS fixed-horizon planning can be coded as a SAT instance using
the classical SATPLAN encoding [9]. So, for a given instance, all plans can be stored in a
compiled form, at least in theory. In practice, the compiled form will often be too large to
be stored. Types of planning problems which are nevertheless amenable to compilation are
those where the number of plans is small or, at the other extreme, there are few constraints
on the order of operators. If we have a compiled form C ′ representing all solution-plans
to an instance P ′ and we encounter a similar problem P , it is natural to ask whether we
can synthesize a plan for P from C ′. If P is isomorphic to a subproblem of P ′, then it
suffices to apply a sequence of conditioning operations to C ′ to obtain a compiled form
C representing all solutions to P . This is our main motivation for studying isomorphisms
between subproblems. A trivial but important special case occurs when C ′ is empty, i.e. P ′

has no solution. In this case, an isomorphism from P ′ to a subproblem of P is a proof that
P ′ has no solution.

In this paper, we first focus on problem SI, which is concerned with finding an isomorphism
between two STRIPS instances of identical size. As we show that the problem is GI-complete,
we prove that a quasi-polynomial time algorithm exists [2]. We then consider problem
SSI, which is concerned with finding an isomorphism between a STRIPS instance and a
subinstance of another STRIPS instance. We call such a mapping a subinstance isomorphism.
After showing that this problem is NP-complete, we propose an algorithm that finds a
subinstance isomorphism if one exists, or that detects that none exists. This algorithm is
based on constraint propagation techniques, that allow us to prune impossible associations
between elements of P and P ′, as well as on a reduction to SAT.

So far we have assumed that the two planning instances P and P ′ have the same initial
states and goals (modulo the isomorphism). Even when this is not the case, an isomorphism
from P to a subinstance of P ′ can still be of use. For example, if π is a solution-plan for
P , then its image in P ′ can be converted to a single new operator which could be added to
P ′ to facilitate its resolution. Such an operator would have the image of the initial state
I of P for precondition, and the image of the result of the application of π to I for effect,
thus abstracting away the application of the sequence of operators π. We therefore also
consider this weaker notion of subinstance isomorphism, that we call homogeneous subinstance
isomorphism, and the corresponding computational problem SSI-H.

Previous work investigated the complexity of various problems related to finding solution-
plans for STRIPS planning instances [4], or focused on the complexity of solving instances
from specific domains [8]. More scarcely, problems focused on altering planning models have
been studied from a complexity theory point of view, such as the problem concerned with
adapting a planning model so that some user-specified plans become feasible [10].

The paper is organized as follows. In Section 2, we introduce general notations, concepts
and constructions that we use throughout this paper. In Section 3 and Section 4, we present
our complexity results, for SI and SSI respectively. In Section 5, we present the outline of
our algorithm for SSI. Section 6 is dedicated to the experimental evaluation and discussion.

2 Preliminaries

2.1 Automated Planning
A STRIPS planning problem is a tuple P = ⟨F, I, O, G⟩ such that F is a set of fluents
(propositional variables whose values can change over time), I and G are sets of literals
of F , called the initial state and goal, and O is a set of operators. Operators are of the
form o = ⟨pre(o), eff(o)⟩. pre(o) and eff(o) are, respectively, the precondition and effect
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of o, which are sets of literals of F . We will denote pre+(o) = {f ∈ F | f ∈ pre(o)}
the positive fluents of pre(o), and pre−(o) = {f ∈ F | ¬f ∈ pre(o)} the negative fluents.
Similarly, eff+(o) = {f ∈ F | f ∈ eff(o)} and eff−(o) = {f ∈ F | ¬f ∈ eff(o)}. By a slight
abuse of notation, we will denote pre : O → 2F ∪ 2¬F the function o 7→ pre(o), and use
similar notations for pre+, pre−, eff, eff+, and eff−. In the rest of this paper, we will note
C = {pre+, pre−, eff+, eff−}. We will also use the notation that, for any set S of literals of F ,
¬S = {¬l | l ∈ S}.

A state s is an assignment of truth values to all fluents in F . For notational convenience, we
associate s with the set of literals of F which are true in s. Given an instance P = ⟨F, I, O, G⟩,
a solution-plan is a sequence of operators o1, . . . , ok from O such that the sequence of states
s0, . . . , sk defined by s0 = I and si = (si−1 \ eff−(oi)) ∪ eff+(oi) (i = 1, . . . , k) satisfies
pre+(oi) ⊆ si−1, pre−(oi) ∩ si−1 = ∅ (i = 1, . . . , k) and G ⊆ sk. A plan is defined similarly
but without the conditions concerning I and G.

2.2 Complexity Class GI
This section introduces the complexity class GI, for which SI is later shown to be complete.
GI is built around the Graph Isomorphism problem, which consists in finding a bijection
u : V → V ′ between the vertices of two graphs G(V, E) and G′(V ′, E′), such that the images
of vertices linked by an edge in G are also linked by an edge in G′ (and vice-versa). Formally,
we require that the following condition holds:

{x, y} ∈ E iff {u(x), u(y)} ∈ E′ (1)

▶ Definition 1. The complexity class GI is the class of problems with a polynomial-time
Turing reduction to the Graph Isomorphism problem.

Complexity class GI contains numerous problems concerned with the existence of an
isomorphism between two non-trivial structures encoded explicitly. Such problems are
often complete for the class: finding an isomorphism between colored graphs, hypergraphs,
automata, etc. are GI-complete problems [15]. In particular, we later use the following result:

▶ Proposition 2 ([15], Ch. 4, Sec. 15). The Oriented Graph Isomorphism problem is
GI-complete.

As with the Graph Isomorphism problem, an isomorphism between oriented graphs
G(V, E) and G′(V ′, E′) is a bijection u : V → V ′ such that (x, y) ∈ E iff ((u(x), u(y)) ∈ E′.

In this paper, we consider another category of structures, called Finite Model, defined
below. Finite models are also such that the related isomorphism existence problem is
GI-complete.

▶ Definition 3. A Finite Model is a tuple M = ⟨V, R1, . . . , Rn⟩ where V is a finite non-empty
set and each Ri is a relation on elements of V with a finite number of arguments.

Let M = ⟨V, R1, . . . , Rn⟩ and M ′ = ⟨V ′, R′
1, . . . , R′

n⟩ be two finite models. An isomorph-
ism between M and M ′ is a bijection u : V → V ′ such that, for any i ∈ {1, . . . , n}, for any
set of elements v1, . . . , vm with m the arity of Ri, Ri(v1, . . . , vm) iff R′

i (u(v1), . . . , u(vm)).

▶ Proposition 4 ([15], Ch. 4, Sec. 15). The Finite Model Isomorphism problem is GI-
complete.

Class GI is believed to be an intermediate class between P and NP: the Graph Isomorphism
problem can indeed be solved in quasi-polynomial time [2]. Although the problem is thought
not to be NP-complete, no polynomial time algorithm is known.

CP 2022
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2.3 Graph encodings into STRIPS
In this section, we present two ways to encode a graph G = (V, E) into a planning problem
P = ⟨F, I, O, G⟩. These constructions are needed at various points in the rest of this paper,
and only differ in that they take into account, or not, the orientation of the edges of G. The
intuition behind these constructions is that they model an agent that would move on the
graph, resting on vertices and moving along edges. An agent being on vertex v would thus
be denoted by the state {v}, where all fluents other than v are false.

In order to make the construction and resulting proofs simpler to read, for any pair
(vs, vt) ∈ F 2, we will denote move(vs, vt) the operator that represents a movement from
vertex vs to vertex vt. Keeping in mind that F = V , we have, more formally:

move(vs, vt) = ⟨{vs}, {vt} ∪ ¬(V \ {vt})⟩

Where {vs} is the precondition of the operator, and {vt} ∪ ¬(V \ {vt}) its effects. In the
following construction, the vertices (resp. edges) of G are in bijection with the fluents (resp.
operators) of P . In particular, we do not allow multi-edges. Other alternative constructions
for move could have been used, as long as the encoding of each edge is unique. The one we
propose is sufficient for our theoretical use, even though they encode trivial planning tasks.

▶ Construction 5. Let G = (V, E) be an oriented graph. Let us build the planning problem
PG = ⟨F, I, O, G⟩, where:

F = V

O = {move(vs, vt) | (vs, vt) ∈ E}
G = I = ∅

In the case of non-oriented graphs, the construction is essentially the same, except that
moves are possible in both directions. This gives us the following definition:

▶ Construction 6. Let G = (V, E) be a non-oriented graph. Let us build the planning problem
PG = ⟨F, I, O, G⟩, where F , I and G are defined as in Construction 5, but where:

O = {move(vs, vt), move(vt, vs) | {vs, vt} ∈ E}

3 STRIPS Isomorphism Problem

This section is concerned with the problem of finding an isomorphism between two STRIPS
planning problems. After introducing the notion of isomorphism between STRIPS instances
that we use throughout this paper, we formally introduce problem SI, and settle its complexity.

▶ Definition 7 (Isomorphism between STRIPS instances). Let P = ⟨F, I, O, G⟩ and P ′ =
⟨F ′, I ′, O′, G′⟩ be two STRIPS instances. An isomorphism from P to P ′ is a pair (υ, ν) of
bijections υ : F → F ′ and ν : O → O′ that respect the following three conditions:

∀o ∈ O, ν (o) = ⟨υ (pre(o)) , υ (eff(o))⟩ (2)
υ (I) = I ′ (3)
υ (G) = G′ (4)

Where, by a slight abuse of notation, for any two sets F1 and F2 of fluents of F ,

υ (F1 ∪ ¬F2) = υ (F1) ∪ ¬υ (F2)



M. C. Cooper, A. Lequen, and F. Maris 13:5

An immediate property of this definition is that it carries over all plans: any se-
quence o1, . . . , on of operators of O is a plan for P if, and only if, the corresponding plan
ν (o1) , . . . , ν (on) is a plan for P ′. This homomorphism property is enforced by equation (2).
Similarly, all solution-plans carry over, as enforced by the additional conditions defined in
equations (3) and (4). We now introduce the problem SI formally, and analyze its complexity:

▶ Problem 8. STRIPS Isomorphism problem SI
Input: Two STRIPS instances P and P ′

Output: An isomorphism (υ, ν) between P and P ′, if one exists

▶ Proposition 9. SI is GI-complete

The rest of this section is dedicated to the proof of this result. We first show the
GI-hardness of the problem, and then that it belongs to GI.

▶ Lemma 10. SI is GI-hard

Proof. The proof consists in a reduction from the Oriented Graph Isomorphism problem to
SI. Let (G, G′) be an instance of the Oriented Graph Isomorphism problem, where G = (V, E)
and G′ = (V ′, E′). The proof relies on Construction 5, which gives us in polynomial time the
STRIPS planning problems PG and PG′ .

We show that there exists an isomorphism u : V → V ′ between G and G′ iff there exists
an isomorphism (υ, ν) between PG and PG′ . The main idea consists in, first, identifying
mappings u and υ, and second, showing that the morphism condition between the edges of
graphs G and G′ is enforced by the morphism condition on the operators of STRIPS instances
PG and PG′ , and vice-versa.

(⇒) Suppose that there exists a graph isomorphism u : V → V ′ between G and G′,
and let us show that there exists an isomorphism between PG and PG′ . We define the
transformation ν on elements of O by ν (⟨pre(o), eff(o)⟩) = ⟨u(pre(o)), u(eff(o))⟩. We will
show that ν : O → O′ is well-defined and that the pair (u, ν) forms an isomorphism between
PG and PG′ . For any o ∈ O, by construction, there exists a unique pair (v1, v2) ∈ V 2 such
that o = move(v1, v2). Thus, we have that

o ∈ O iff (v1, v2) ∈ E

iff (u(v1), u(v2)) ∈ E′

iff move(u(v1), u(v2)) ∈ O′

iff ν (move(v1, v2)) ∈ O′

iff ν (o) ∈ O′

The arguments from one line to the other stem from the construction of the various objects
we use. Thus, we have shown that PG and PG′ are isomorphic.

(⇐) Suppose that PG and PG′ are isomorphic, and that there exists an isomorphism
(υ, ν) between them. We will show that there exists an isomorphism between G and G′. By
hypothesis, we have υ : F → F ′ (or υ : V → V ′) and ν : O → O′ two bijections.

In the following, we will denote by g and g′ the bijections g : E → O and g′ : E′ → O′,
that exist by the construction (e.g. g((v1, v2)) = move(v1, v2)).

Let us show that the function υ is a graph isomorphism between G and G′. We have that,
for any e = (v1, v2) ∈ E, g(e) = move(v1, v2) ∈ O. So ν ◦ g(e) = ν (move(v1, v2)), and as
such, ν ◦ g(e) = move(υ (v1) , υ (v2)) ∈ O′. Then, g′−1 ◦ ν ◦ g(e) = (υ (v1) , υ (v2)), but also
g′−1 ◦ ν ◦ g(e) ∈ E′. As a consequence, (υ (v1) , υ (v2)) ∈ E′.

With similar arguments, as g, g′ and ν are bijections, the converse can be shown. As a
consequence, ν is a graph isomorphism between G and G′. ◀

CP 2022
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▶ Lemma 11. SI is in GI.

Proof. The proof follows a reduction from SI to the Finite Model isomorphism problem, as
defined in Definition 3. It is based on the following construction: for any planning problem
P = ⟨F, I, O, G⟩, we build the finite model MP , such that:

MP = ⟨V, RF , RI , RO, RG, Rpre+ , Rpre− , Reff+ , Reff−⟩
V = F ⊔ O

For X ∈ {F, I, O, G}, RX = X

For each S ∈ C, RS =
{

(o, f) ∈ V 2 | o ∈ O and f ∈ S(o)
}

where C = {pre+, pre−, eff+, eff−}. We will show that any two STRIPS planning problems P

and P ′ are isomorphic iff MP and MP ′ are isomorphic.
Let us denote MP = ⟨V, RF , . . . , Reff−⟩ and MP ′ = ⟨V ′, R′

F , . . . , R′
eff−⟩

(⇒) Suppose that there exists an isomorphism (υ, ν) between P and P ′. Define the
mapping g : V → V ′ such that, for x ∈ V ,

g(x) =
{

υ (x) if x ∈ F

ν (x) if x ∈ O
(5)

g is immediately a bijection, by hypothesis on (υ, ν). In addition, for X ∈ {F, I, O, G},
RX(v) iff R′

X(g(v)), by hypothesis on (υ, ν).
Let o ∈ O, p ∈ F . We have that, for any S ∈ C = {pre+, pre−, eff+, eff−},

RS(o, p) iff o ∈ O and p ∈ S(o) (6)
iff ν (o) ∈ O′ and υ (p) ∈ S(ν (o)) (7)
iff R′

S(ν (o) , υ (p))
iff R′

S(g(o), g(p))

The passage from (6) to (7) is by definition of the isomorphism. The other equivalences
follow mostly by definition. This proves that MP and MP ′ are isomorphic.

(⇐) Suppose that MP and MP ′ are isomorphic, and that g : V → V ′ is an isomorphism
between the two models. Let us define υ = g|F (resp. ν = g|O) the restriction of g on the
subdomain F (resp. O). Clearly, we have that υ : F → F ′, as otherwise there would exist an
element v ∈ V such that RF (v) but without R′

F (g(v)), violating the isomorphism hypothesis
on g. Similarly, we have ν : O → O′. We have, as above, for any o ∈ O,

o = ⟨pre(o), eff(o)⟩
iff ∀p ∈ F, ∀S ∈ C, p ∈ S(o) ⇔ RS(o, p) (8)
iff ∀p ∈ F, ∀S ∈ C, p ∈ S(o) ⇔ R′

S(g(o), g(p)) (9)
iff ∀p ∈ F, ∀S ∈ C, g(p) ∈ g(S(o)) ⇔ R′

S(g(o), g(p)) (10)
iff ∀p′ ∈ F ′, ∀S ∈ C, p′ ∈ g(S(o)) ⇔ R′

S(g(o), p′) (11)
iff g(o) = ⟨g(pre(o)), g(eff(o))⟩ (12)
iff ν (o) = ⟨υ (pre(o)) , υ (eff(o))⟩

The relations between the first line and (8), as well as between (11) and (12) hold
by construction of MP and MP ′ . The equivalence between (8) and (9) comes from the
hypothesis that g is an isomorphism. Between (9) and (10), we use that g is a bijection. For
the equivalence between (10) and (11), we use that g is surjective over F ′.

This finally proves that (υ, ν) is a homomorphism, and thus an isomorphism by choice of
its domain and codomain. ◀
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The results still hold if we do not enforce conditions (3) and (4), that the initial and goal
states of P and P ′ are in bijection. Indeed, the hardness proof relies on a reduction from
the Graph Isomorphism problem, with graphs that do not have initial or goal nodes, which
renders trivial the initial and goal states of the construction. Conversely, the proof that SI
belongs to class GI can include, or not, the relations RI and RG that take into account the
information concerning initial and goal states, and still remain correct for the version of SI
without conditions on the initial and goal states. This means that the hardness of SI comes
from matching the inner structure of the state-space, and that additional properties on some
states (like being initial states or goal states) do not impact significantly the complexity of
the problem. This is consistent with our intuition of class GI: it is known that finding a
color-preserving isomorphism between colored graphs (i.e., an isomorphism that conserves a
given property on nodes) is also a problem that is complete for this class [15].

4 The STRIPS Subinstance isomorphism problem

Let us now introduce problems SSI-H and SSI, which are concerned with finding (different
kinds of) isomorphisms between a planning instance P and some subinstance of another
STRIPS instance P ′. In this section, we settle the complexity of both problems, and show
that they are NP-complete. We use this result in order to propose, in the next section, an
algorithm for SSI and SSI-H. This algorithm is based on a reduction to SAT, assisted by a
preprocessing phase that relies on constraint propagation.

We begin by introducing the notion of homogeneous subinstance isomorphism, which is
concerned with finding an isomorphism between P and a subinstance of P ′, but does not
conserve the initial state and goal. It maps the whole state-space of problem P to a part of
the state-space of problem P ′, regardless of the initial state and goal of either problem.

▶ Definition 12 (Homogeneous subinstance isomorphism). Consider two STRIPS instances
P = ⟨F, I, O, G⟩ and P ′ = ⟨F ′, I ′, O′, G′⟩. A homogeneous subinstance isomorphism from P

to P ′ is a pair (υ, ν) of injective mappings υ : F → F ′ and ν : O → O′ that respect condition
(2) of Definition 7.

▶ Problem 13. STRIPS Homogeneous Subinstance Isomorphism SSI-H
Input Two STRIPS instances P and P ′

Output A homogeneous subinstance isomorphism (υ, ν) between P and P ′, if one exists

A homogeneous subinstance isomorphism between P and P ′ is useful, for instance, in the
case where we managed to compile all plans for P ′, and wish to extract a plan for P . The
following more precise notion of isomorphism between P and a subinstance of P ′ takes into
account the information provided by the initial state and goal. This allows us to carry over
only solution-plans from one problem to the other.

▶ Definition 14 (Subinstance isomorphism). A subinstance isomorphism from P to P ′ is a
homogeneous subinstance isomorphism that respects conditions (3) and (4) of Definition 7.

▶ Problem 15. STRIPS Subsintance Isomorphism SSI
Input Two STRIPS instances P and P ′

Output A subinstance isomorphism (υ, ν) between P and P ′, if one exists

The main difference between SI and SSI is that, in SSI, we relax the condition on the
bijectivity of υ and ν, to account for the difference in size between P and P ′. Their injectivity
is still required in order to prevent fluents (or operators) being merged together by the
mapping. All other conditions remain the same.

CP 2022
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The main result of this section is presented below. The proof is based on a reduction
from the Subgraph Matching problem, which is known to be NP-complete [5]. As such, we
introduce that problem before stating our result. Essentially, it consists in finding a mapping
g, that defines an isomorphism between G and the subgraph (g(V ), E′ ∩ g(V ) × g(V )) of G′.

▶ Problem 16. Subgraph Matching problem
Input Two non-oriented graphs G(V, E) and G′(V ′, E′)

Output An injective mapping g : V → V ′ such that, for any v1, v2 ∈ V , {v1, v2} ∈ E iff
{g(v1), g(v2)} ∈ E′.

▶ Proposition 17. SSI is NP-complete

Proof. In order to prove that SSI is in NP, it suffices to resort to the certificate-based
definition of the class NP, and observe that the mappings υ and ν constitute a polynomial
size certificate that can be checked in polynomial time.

The proof that SSI is NP-hard consists in a reduction from the Subgraph Matching
problem, which is straightforward with the construction that we proposed earlier.

Let (G, G′) be an instance of the Subgraph Matching problem, and let us follow Con-
struction 6 to build planning problems PG and PG′ . We show that there exists a subgraph
matching g between G and G′ iff there exists a subinstance isomorphism of PG and PG′ .

(⇒) Suppose that there exists a subgraph matching g : V → V ′ between G and G′.
Then by construction, as F = V and F ′ = V ′, g is also an injective mapping between F

and F ′. In addition, let us define the mapping ν : O → O′ such that ν : move(v1, v2) 7→
move(g(v1), g(v2)). ν is well-defined, as {v1, v2} ∈ E iff {g(v1), g(v2)} ∈ E′, so move(v1, v2) ∈
O iff move(g(v1), g(v2)) ∈ O′. In addition, as g is injective, so is ν. As a consequence, (g, ν)
is a subinstance isomorphism between PG and PG′ .

(⇐) Suppose that there exists a subinstance isomorphism (υ, ν) between PG and PG′ . As
above, υ : V → V ′ is an injective mapping. In addition, we have that

(v1, v2) ∈ E

iff move(v1, v2) ∈ O

iff ν (move(v1, v2)) ∈ O′

iff move(υ (v1) , υ (v2)) ∈ O′

iff (υ (v1) , υ (v2)) ∈ E′

As a consequence, υ is a subgraph matching between G and G′. ◀

In addition, it is clear that SSI-H is in NP. As the above proof of NP-hardness of SSI is
independent of the initial and goal states, it also applies to the problem SSI-H.

▶ Corollary 18. SSI-H is NP-complete

5 An algorithm for SSI

In this section, we present an algorithm for problem SSI, for which the pseudo-code is
presented in Algorithm 1. This algorithm is based on a compilation of the problem into a
propositional formula, which is then passed to a SAT solver. It is completed by a preprocessing
step, based on constraint propagation, that allows us to prune impossible mappings early on.
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Algorithm 1 to find a subinstance isomorphism.
Input: Two STRIPS instances P and P ′

Output: A subinstance isomorphism between P and P ′ if one exists
1: Initialize_domains(F, O)

/* Prune impossible associations */
2: Q := F ∪ O

3: while Q ̸= ∅ do
4: v := Q.Pop()
5: r := Revise(v)
6: if r then
7: if D(v) = ∅ then return UNSAT
8: else Q.Add({v′ | v′ related to v})

/* Search phase through a SAT solver */
9: φ := Encode_to_SAT(P, P ′, D)

10: return Interpret(Solver.Find_model(φ))

Given two STRIPS instances P and P ′, the algorithm outputs, when possible, a subin-
stance isomorphism (υ, ν). Algorithm 1 consists in two main phases. The first phase, that
spans lines 2 to 8, consists in pruning as many associations between fluents (resp. operators)
of problem P and fluents (resp. operators) of problem P ′ that are impossible, because of
some syntactical inconsistencies (described below) that are then propagated. The second
phase, that starts at line 9, consists in a search phase, by means of an encoding of the
problem into a CNF formula, that is then passed to a SAT solver.

5.1 Pruning invalid associations
By association between fluents, we mean a pair (f, f ′) ∈ F ×F ′ such that f ′ is a candidate for
the value of υ (f). Similarly, we call an association between operators a pair (o, o′) ∈ O × O′

such that o′ is a candidate for the value of ν (o). Detecting early on associations that can
not be part of a valid subinstance isomorphism reduces the size of the search space.

In order to prune as many inconsistent associations as possible, we use a technique similar
to constraint propagation, as commonly found in the constraint programming literature. The
general idea is to maintain, for each fluent f ∈ F of P , a domain D(f) ⊆ F ′ of fluents of
P ′, that consists of the plausible candidates for the value of υ (f). Similarly, each operator
o ∈ O is assigned a domain D(o) ⊆ O′, containing the plausible candidates for ν (o). In the
following, we call fluents and operators variables. The aim of the procedure presented below
is to trim the domains of the variables, thus alleviating the load left to the SAT solver.

The first step is to initialize the domains. For each fluent f ∈ F , we set D(f) = F ′. The
initial assignment of the domains of operators o ∈ O, however, is based on operator profiles.
For each operator o ∈ O ∪ O′, we define the vector profile(o) ∈ N6, called the profile of o.
This vector numerically abstracts some characteristics of the operator, so that an operator
o ∈ O cannot be associated to operator o′ ∈ O′ if profile(o) ̸= profile(o′). In practice, profile(o)
consists of the number of positive and negative fluents in the precondition and effect of o, as
well as its number of strict-add and strict-delete fluents. A fluent f is said to be strict-add for
operator o if f ∈ pre−(o) ∧ f ∈ eff+(o), and strict-delete if f ∈ pre+(o) ∧ f ∈ eff−(o). Then,
we initialize the domain of each o ∈ O such that

D(o) = {o′ ∈ O′ | profile(o′) = profile(o)}
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The second step is to propagate the additional constraints posed by these newly-found
restrictions of the domains. The technique we propose is based on the concept of arc
consistency, which is ubiquitous in the field of constraint programming. The idea consists
in eliminating, from the domains of fluents (resp. operators), the candidate fluents (resp.
operators) that have no support in the domain of some operator (resp. fluent).

More specifically, let us consider a fluent f ∈ F . When an operator o ∈ O is such that f

appears, negated or not, in its precondition or effect, then we say that o depends on f . Let us
denote d(f) the set of operators that depend on f . When f ′ ∈ F ′, we define d(f ′) in a similar
fashion. Now suppose that υ (f) = f ′. As a consequence of equation (2) of Definition 7, each
operator of d(f) must have its image by ν in d(f ′). Otherwise, f would appear in pre(o)
or eff(o), but υ (f) would not appear in υ (pre(o)) nor υ (eff(o)). Thus, if for some operator
o ∈ d(f) no candidate operator for its image is in d(f ′) (i.e., D(o) ∩ d(f ′) = ∅), then it
means that f ′ can not be chosen as the image of f .

In the following, we refine the argument of last paragraph by identifying pre+(o) with
pre+(o′), . . . , eff−(o) with eff−(o′). We thus have the following constraint for D(f), where
C = {pre+, pre−, eff+, eff−}:

D(f) ⊆
{

f ′
∣∣∣∣ ∀o ∈ O, ∀S ∈ C s.t. f ∈ S(o),

∃o′ ∈ D(o) s.t. f ′ ∈ S(o′)

}
(13)

A similar case can be made for operators. Let o ∈ O be any operator, and consider a
candidate operator o′ ∈ O′. In order for the morphism property to hold, in the case where
ν (o) = o′, for every fluent f of pre+(o), for instance, there must exist in pre+(o′) a fluent
that belongs to D(f). More generally and more formally, we have the following:

D(o) ⊆ {o′ | ∀S ∈ C, ∀f ∈ S(o), ∃f ′ ∈ D(f) ∩ S(o′)} (14)

Algorithmically, we enforce these constraints using an adaptation of AC3 [12, 14]. The
algorithm revolves around the revision of the coherence of the variables’ domains. Revising
a variable v boils down to checking that all elements of its domain still comply with the
necessary condition evoked earlier, which is either equation (13) if v is a fluent, or equation (14)
if v is an operator. The main loop, depicted in Algorithm 1, then consists in revising all
fluents and operators iteratively, by maintaining a queue Q of variables to revise (line 1).
The algorithm begins by revising once each variable. If, during the revision of a variable
v, the domain of v is altered by the procedure, then all variables that are related to v are
added to the set of variables to revise later on (lines 5 to 9). We say that v′ is related to v

if v is a fluent and v′ ∈ d(v), or conversely. If the domain of a variable is empty, then no
isomorphism exists, and the procedure ends prematurely (line 6 and 7). Otherwise, the loop
ends when there is no variable left to revise.

This procedure is often not sufficient to conclude, but greatly alleviates the pressure on
the search phase, which we present in the following section.

5.2 Encoding into a SAT instance
In this section, we build the propositional formula φ evoked earlier, from the models of which
an isomorphism can be extracted. φ is built on the set of variables Var(φ), such that:

Var(φ) =
{

f j
i

∣∣∣ i ∈ F, j ∈ F ′
}

∪ { os
r | r ∈ O, s ∈ O′ }

The propositional variable f j
i represents the association of fluent i ∈ F to fluent j ∈ F ′.

Likewise, os
r represents the association of r ∈ O to s ∈ O′.
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In the rest of this section, we show how to build formula φ, which encodes the SSI problem
input to Algorithm 1. φ consists in the conjunction of the formulas presented below.

The formula presented in (15) enforces that each fluent has an image which is unique.
Similarly, by swapping f j

i variables for oj
i and adapting the domains of i and j, we enforce

that each operator has an image by ν.

∧
i∈F

 ∨
j∈D(i)

f j
i ∧

∧
j,k∈D(i)

j ̸=k

(¬f j
i ∨ ¬fk

i )

 (15)

We now need to ensure that υ and ν are injective. For fluents, this is done through (16). A
similar formula is used to ensure the injectivity of ν on operators.∧

i∈F ′

∧
j,k∈F
j ̸=k

¬f i
j ∨ ¬f i

k (16)

The morphism property is enforced by formulas (17) and (18), for each S ∈ C, where C =
{pre+, pre−, eff+, eff−}. More precisely, (17) ensures that, for any S ∈ C and for any operator
o ∈ O, we have υ (S(o)) ⊆ S(ν (o)). Conversely, (18) ensures that S(ν (o)) ⊆ υ (S(o)).

∧
r∈O
s∈O′

os
r −→

∧
i∈S(r)

∨
j∈S(s)

f j
i

 (17)

∧
r∈O
s∈O′

os
r −→

∧
j∈S(s)

∨
i∈S(r)

f j
i

 (18)

Finally, we need to conserve the initial and the goal state (i.e., respect equations (3) and
(4)). Let us denote I+ (resp. I−) the set of fluents appearing positively (resp. negatively) in
I, and use similar notation for G, I ′ and G′. For every T ∈ {I+, I−, G+, G−}, and for the
corresponding T ′ ∈ {I ′+, I ′−, G′+, G′−}, we then add the following formulas:∧

i∈T

∨
j∈T ′

f j
i ∧

∧
j∈T ′

∨
i∈T

f j
i (19)

The formulas presented in (15), (16), and (19) are immediately in CNF, and the size
of their conjunction is in O(|F | · |F ′|2 + |O| · |O′|2) assuming |F | ≤ |F ′| and |O| ≤ |O′|. In
addition, the formulas presented in (17) and (18) can be readily converted into CNF by
duplicating the implication in each clause, and then have a size O(|O| · |O′| · |F | · |F ′|).

The preprocessing step presented in Section 5.1 allows us to simplify φ. Indeed, if it is
known that fluent i ∈ F (resp. r ∈ O) cannot be mapped to fluent j ∈ F ′ (resp. s ∈ O′),
then f j

i (resp. os
r) is necessarily false in any model of φ. As a consequence, as all formulas

are in CNF, every positive occurrence of f j
i is removed in the clauses of φ, while clauses

where f j
i appears negatively are simplified.

In order to adapt the algorithm for SSI-H, it suffices to remove the set of formulas
presented in (19). The others formulas and the rest of the algorithm remains the same.
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Table 1 Number of instances of SSI-H and SSI on which our implementation of our method
terminates within 600 seconds. For each problem, the first pair of columns shows the number of
STRIPS matching instances solved with and without the constraint propagation-based preprocessing,
respectively. The last column shows the average percentage of clauses that have been eliminated
from the propositional encoding, thanks to the pruning step.

Domain SSI-H SSI
CP NoCP Av. Simp. CP NoCP Av. Simp.

blocks 172 96 76.1% 166 93 76.2%
gripper 210 189 74.9% 90 84 75.1%
hanoi 74 75 0.2% 85 82 0.2%
rovers 19 6 97.4% 16 6 97.3%
satellite 34 22 79.1% 38 23 78.4%
sokoban 204 0 98.6% 205 4 98.6%
tsp 376 374 0.7% 265 266 1.0%

6 Experimental evaluation

We implemented Algorithm 1 in Python 3.10, and used it to solve SSI and SSI-H. In order
to parse planning instances in PDDL and convert them into a STRIPS representation, we
used the parser of TouISTPlan [3]. The SAT solver we used was Maple LCM [11], winner of
the main track at SAT 2017. The code and sets of benchmarks are available online.

Experiments were run on a machine running Rocky Linux 8.5, powered by an Intel
Xeon E5-2667 v3 processor, using at most 8GB of RAM and 4 threads per test. Our set of
benchmarks is based on eight sets found in previous International Planning Competitions,
namely Blocks, Gripper, Hanoi, Rovers, Satellite, Sokoban, TSP and Visitall. For each of
these domains, we created what we call STRIPS matching instances, which are pairs of
instances of the same domain. We did this for each possible pair of planning instances of
each considered domain. A STRIPS matching instance is an instance of both SSI and SSI-H.
We thus evaluated our algorithm adapted for both problems on the same set of benchmarks.

The goal of the experiments is twofold. First, the aim is to demonstrate that, despite
the theoretical hardness of the problem, it is possible to find a (homogeneous) subinstance
isomorphism in reasonable time for problems of non-trivial size. Second, the goal is to
show the efficiency of the pruning technique presented in Section 5.1, i.e., to prove that the
additional cost of the preprocessing is outbalanced by the speed-up it provides during search.

The coverage of our implementation on our set of benchmarks is shown in Table 1 for
both SSI and SSI-H. The table shows the absolute and relative numbers of instances of
SSI (resp. SSI-H) on which our implementation terminates within the time and memory
cutoffs. Note that we tested our algorithm on a handful of other domains, but we only report
those for which at least one instance was solved. Domains where even the smallest problem
timeouts include Visitall, Barman and Woodworking, for instance.

The first point we notice is that problems SSI-H and SSI are often closely comparable
in terms of hardness, except for some particular domains. These include domains TSP and
Gripper, for which 40% and 133% more instances are solved when requiring no condition on
the initial state and goal. For both domains, this is due to the additional constraints in SSI.
Indeed, because of these constraints all pairs of non-identical TSP planning instances (or
Gripper planning instances) constitute negative SSI instances, which turn out to be harder
for the SAT solver to detect than positive ones.
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A crucial observation is that the preprocessing step almost never holds back the algorithm:
almost all instances of our test sets that can be solved without preprocessing are also solved
when the preprocessing step is performed. Furthermore, in many sets of benchmarks, the
preprocessing greatly improves the overall performance of our implementation, so much so
that some previously infeasible domains are now within the range of our algorithm. Such
extreme cases include Sokoban, for which our algorithm is powerless without the pruning step:
all 204 instances solved by our implementation are outside the range of the preprocessing-less
version of the algorithm. In most cases, however, we observe a significant increase in the
coverage of the algorithm, that remains nonetheless within the same order of magnitude. For
example, for domain Satellite in the case of SSI, 34 instances are solved when constraint
propagation is enabled, whereas only 22 can be settled without it.

More specifically, in most cases, the preprocessing step leads to a reduction of the size of
the propositional encoding. This is shown by the columns labeled “Av. Simp.” in Table 1,
which represent the average proportion of clauses that are simplified as a consequence of the
pruning step. The highest percentages of simplified clauses are found in domains that contain
little to no symmetries. For example, in Rovers, fluents represents entities that often have
different types, and that are affected in different ways by operators. For instance, operators of
the form navigate(rover, x, y) have a unique profile, and are not numerous. Consequently,
their respective domains remain small, which is something our algorithm makes the most of.

On the contrary, for domains that contain lots of symmetries, the pruning step does not
remove a significant number of associations. This is the case in Hanoi, where all operators
have the same profile: except for the information provided by the initial and goal state, all
disks are interchangeable, which does not allow our preprocessing to draw any conclusive
result. The only bits of information that can guide the search are encoded in the initial state,
which we believe partly explains the slightly greater coverage of SSI over SSI-H.

In some instances of our set of benchmarks, pruning suffices to find that no (homogeneous)
subinstance isomorphism exists: as the majority of associations between fluents or between
operators are ruled out, the domains of some variables become empty. As a direct consequence,
our algorithm is most effective in the case where no (homogeneous) subinstance isomorphism
exists. In many of these cases, an empty domain is found for a variable, which allows the
algorithm to return UNSAT prematurely, and skip the search phase altogether. This is
why the pruning step allows us to significantly increase our coverage on STRIPS matching
instances that are negative, as shown in Figure 1, while our performance on positive instances
is more modest, although significant.

In Table 2, we also show that the additional time required by the constraint propagation
phase is negligible compared to the rest of the algorithm. In fact, be it in domains where
it prunes out lots of associations or in domains where its efficiency is limited, constraint
propagation rarely takes more than a handful of seconds. As a consequence, some instances
that would otherwise require a substantial amount of time are now solved almost immediately.
In addition, as shown in Figure 1b, solving any 500 negative SSI instances requires 10 minutes
when pruning is not enabled, while it requires less than a minute when pruning is enabled.

In Table 3, we present a few results on the absolute sizes of the problems that we solved
during our experiments, within the time and memory limits. For a STRIPS planning problem
P = ⟨F, I, O, G⟩, we denote |P | = |F | + |O|. As an SSI instance has two main dimensions,
represented by the respective sizes of the planning instances that constitute it, we present
two different ways of measuring it size6. In the first set of columns of Table 3, the sum
of both planning instances is considered, and we report the size of the SSI instance that
maximizes that sum. With this metric, P ′ is often disproportionately bigger than P . This
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(a) SSI instances with positive outcome
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(b) SSI instances with negative outcome

0 200 400 600
Time cutoff (s)

0

200

400

600

800

To
ta
l #

 o
f i
ns

ta
nc

es
 so

lv
ed

(c) SSI-H instances with positive outcome
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(d) SSI-H instances with negative outcome

Figure 1 Number of SSI (top) and SSI-H (bottom) instances that can be solved by our implement-
ation, as a function of the time cutoff. Blue/orange curves correspond respectively to with/without
pruning (constraint propagation preprocessing).

imbalance can be explained by the fact that the encoding into a propositional formula is
of time and size O(|O| · |O′| · |F | · |F ′|), as mentioned previously. Thus, in the second set
of columns, we consider instead the lexicographic order on pairs (|P |, |P ′|), and report the
biggest problem with respect to that metric.

7 Conclusion

In this article, we introduced the problem SI, which is concerned with finding an isomorphism
between two planning problems, and showed that it is GI-complete. Afterwards, we introduced
the notion of subinstance isomorphism, as well as the associated problem SSI. In addition
to proving the NP-completeness of the problem, we proposed an algorithm for it, based on
constraint propagation techniques and a reduction to SAT

The experimental evaluation of said algorithm shows that traditional constraint propaga-
tion in a preprocessing step can greatly improve the efficiency of SAT solvers. However,
even though it is not costly to perform, not all planning domains benefited equally from this
preprocessing.

On a more general note, various methods have been proposed to automatically reformulate
general models, with the aim of rendering easier the task delegated to the solver [13]. It
remains an interesting open question to identify which characteristics of problems in NP
make them amenable to this hybrid CP-SAT approach.
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Table 2 Average time, in seconds, spent in each of the main three steps of the algorithm: pruning
(CP), compilation to SAT, and solving, respectively. The last column summarizes the average
total running time of the algorithm. We only report instances that were successfully solved (either
positively or negatively), and results for SSI-H and SSI are thus non-comparable.

Domain SSI-H SSI
CP Comp. Solving Total time CP Comp. Solving Total time

blocks 0.5 93.3 76.8 170.3 0.4 83.3 94.6 178.1
gripper 0.2 23.5 9.8 33.4 0.1 11.2 35.2 46.5
hanoi 0.3 43.9 78.0 122.0 0.3 70.9 47.8 118.9
rovers 1.8 168.9 2.2 171.4 1.7 180.7 2.7 183.5
satellite 0.4 116.4 48.8 165.4 0.4 85.0 10.3 95.4
sokoban 1.7 222.7 2.3 225.2 1.7 220.6 1.4 222.3
tsp 0.2 50.7 46.7 97.5 0.1 14.6 26.6 41.2

Table 3 Sizes of the biggest instances that can be solved by our implementation within the time
and memory limits, for both SSI-H and SSI. In the first set of columns, we consider the sum of the
sizes of the planning instances that constitute the STRIPS matching instance. In the second set, we
consider the size of P , the smallest planning instance among the pair that constitutes the instance.

Domain
SSI-H SSI

Maximum sum Max |P | Maximum sum Max |P |
|P | |P ′| Sum |P | |P ′| |P | |P ′| Sum |P | |P ′|

blocks 57 4642 4699 534 534 57 4642 4699 534 534
gripper 510 510 1020 510 510 510 510 1020 510 510
hanoi 13 3328 3341 391 391 13 6953 6966 391 513
rovers 276 2667 2943 920 920 276 2667 2943 920 920
satellite 147 2066 2213 608 920 147 2610 2757 608 920
sokoban 2212 2286 4498 2212 2286 2212 2286 4498 2212 2286
tsp 182 930 1112 462 462 90 930 1020 380 380
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