Isomorphism between STRIPS instances and sub-instances

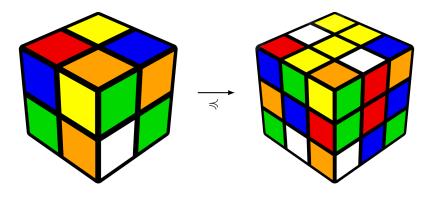
Martin C. Cooper Arnaud Lequen Frédéric Maris

IRIT - Université Toulouse-III

A simple example: Rubik's cube

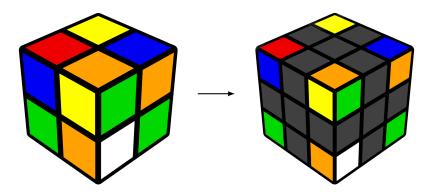
- Simple to describe
- 43e18 different configurations
- ...but "efficient" algorithms are known

A simple example: Rubik's cube



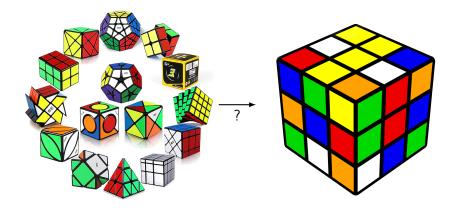
- What if we know how to solve a 3x3 cube...
- ...but not a 2x2?
- Solution: Reduce the problem to a 3x3 cube

A simple example: Rubik's cube



- Map elements of the 2x2 cube to elements of the 3x3 cube
- Map operations on the 2x2 cube to operations on the 3x3

A simple example: Rubik's cubes



- Isomorphisms?
- Subinstance isomorphisms?
- No homomorphism exists?

M. C. Cooper, A. Lequen, F. Maris

Classical planning

- Model of the problem ightarrow sequence of actions π to solve it
- PSPACE-complete

Topic of this talk: comparison between planning instances

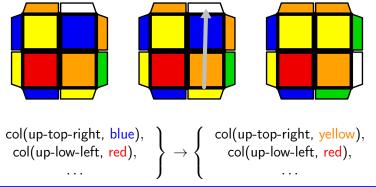
- 1. Computational complexity
- 2. Algorithmic procedure

STRIPS language

STRIPS instance: $P = \langle F, I, O, G \rangle$

- F: fluents (boolean variables that describe the current state)
- I, $G \subseteq F$: initial state and goal
- O: operators of the form:

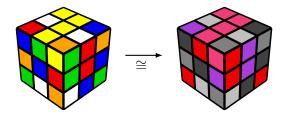
$$o = \langle \textit{pre}(o), \textit{eff}^+(o), \textit{eff}^-(o)
angle \in (2^F)^3$$



STRIPS Isomorphism - SI

Input: Two STRIPS instances *P* and $P' = \langle F', I', O', G' \rangle$ **Output :** $u : F \longrightarrow F'$ and $v : O \longrightarrow O'$ one-to-one s.t.

- For all $o \in O, \mathsf{v}(o) = \langle \mathsf{u}(\mathit{pre}(o)), \mathsf{u}(\mathit{eff}^+(o)), \mathsf{u}(\mathit{eff}^-(o)) \rangle$
- I' = u(I)
- G' = u(G)



STRIPS Isomorphism Problem SI - Complexity

SI is GI-complete

Complexity class GI

Problems polytime-reducible to the graph isomorphism problem

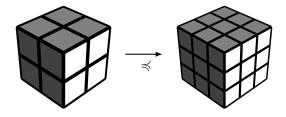
How hard is it?

- Theoretical: 2^{O(log n)³} [Babai, 2016]
- In practice: Efficient solvers exist

Homogeneous STRIPS subinstance isomorphisms - SSI-H

Input: Two STRIPS instances *P* and $P' = \langle F', I', O', G' \rangle$ **Output :** Two functions $u : F \longrightarrow F'$ et $v : O \longrightarrow O'$ s.t.

- *u* is injective
- For all $o \in O, \mathbf{v}(o) = \langle \mathbf{u}(\textit{pre}(o)), \mathbf{u}(\textit{eff}^+(o)), \mathbf{u}(\textit{eff}^-(o)) \rangle$

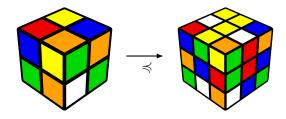


STRIPS subinstance isomorphisms

STRIPS subinstance isomorphism - SSI

Input: (Same as above) **Output:** A homogeneous STRIPS subinstance isomorphism s.t.

- I' = u(I)
- G' = u(G)



STRIPS subinstance isomorphism SSI - Complexity

SSI is NP-complete

Proof idea

Reduction from Hamiltonian Cycle

Remark

Easier to find a subinstance isomorphism (NP-c) than to solve the planning problem (PSPACE-c)

Algorithm

- 1. Constraint propagation-based preprocessing
- 2. Compilation into SAT

Algorithm - Preprocessing

Preprocessing

Aim: Prune inconsistent mappings:

•
$$f \in F \rightarrow f' \in F'$$

•
$$o \in O \rightarrow o' \in O'$$

Idea

Maintain domains for the images of each fluents/actions, and prune them through *arc consistency*

Subroutine Adapted from AC3

Constraint propagation - domains initialization

Fluents

Initial domain chosen among these: (if applicable)

• If $f \in I$ then $\mathcal{D}(f) = I'$

• Else $\mathcal{D}(f) = F' \setminus (I' \cup G')$

• . . .

Actions

- Action profile: vector of \mathbb{N}^k
 - $profile(o) = \langle |pre(o)|, \dots, |eff^{-}(o)|, |sd(o)| \rangle$
 - sd(o): strict-delete fluents ($f \in pre(o) \land f \in eff^{-}(o)$)

•
$$\mathcal{D}(o) = \{o' \mid \text{profile}(o') \ge \text{profile}(o)\}$$

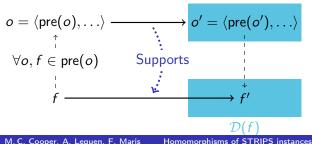
Prune operators not supported by some fluent

$$\mathcal{D}_{v}(o) \subseteq \left\{ o' \mid \forall f \in \textit{pre}(o), \exists f' \in \textit{pre}(o') \text{ s.t. } f' \in \mathcal{D}_{u}(f) \land \ldots \right\}$$

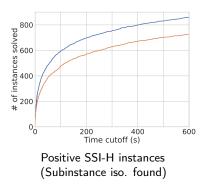
Prune fluents not supported by some operator

$$\mathcal{D}_{u}(f) \subseteq \left\{ \begin{array}{c} f' \\ \exists o' \in \mathcal{D}_{v}(o) \text{ s.t. } f' \in pre(o') \\ \land \dots \end{array} \right\}$$

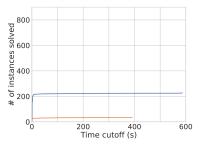
 $\mathcal{D}(o)$



Homogeneous STRIPS subinstances solved before cutoff

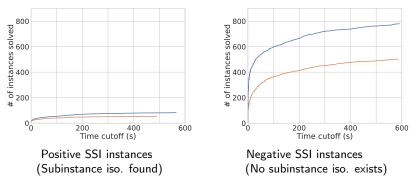


- Blue: Preprocessing on
- Orange: Preprocessing off



Negative SSI-H instances (No subinstance iso. exists)

STRIPS subinstances solved before the time cutoff



- Blue: Preprocessing on
- Orange: Preprocessing off

Preprocessing step

- Lasts < 3 seconds in most cases
- Sometimes sufficient to detect unsolvable instances

Efficiency can vary with the domain

- Between 70% and > 99% of associations pruned (for 5 domains out of 7)
- < 2% of associations pruned (for 2 domains out of 7)
- Less efficient for domains with lots of symetries

Conclusion

Complexity

- Isomorphism: GI-complete
- Subinstance isomorphism: NP-complete

Algorithm

- Compilation to SAT
- Preprocessing: constraint propagation-based
- Feasible in practice

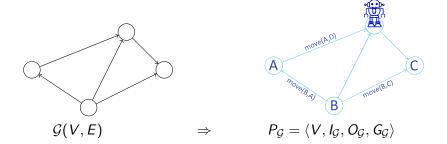
Future work:

- Practical: Exploit symmetries
- Theoretical:
 - Study properties carried over by homomorphisms
 - Find other forms of comparison relations

SI complexity - Proof sketch

SI is GI-hard

Reduction from the graph isomorphism problem



SI is in GI

• Reduction to the **finite models** isomorphism problem $\mathcal{M} = \langle V, \mathcal{R}_1, \dots, \mathcal{R}_n \rangle$

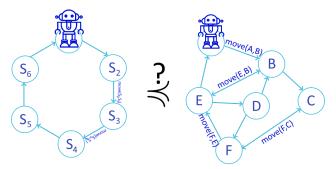
SSI complexity - Proof sketch

STRIPS subinstance isomorphism SSI - Complexity

SSI is NP-complete

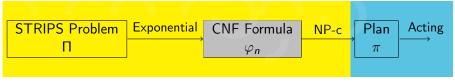
Reduction from Hamiltonian Cycle

- Encode input $\mathcal{G}(V, E)$ into STRIPS
- Encode a cycle graph of size |V| into STRIPS
- A STRIPS subsintance isomorphism exists iff a cycle exists in ${\cal G}$



Encode all plans...

Planning as satisfiability [Kautz et al., 1992]

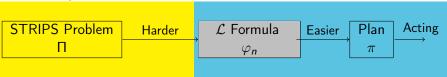


Offline

Online

φ_n: State-space encoded in CNF, up to n actions (horizon n)
 Bijection: models of φ_n ⇔ plans of size n

Our Proposal



L: some propositional language to be determined

References

Babai, L. (2016).

Graph isomorphism in quasipolynomial time.

Kautz, H. A., Selman, B., et al. (1992).

Planning as satisfiability.

In ECAI, volume 92, pages 359-363. Citeseer.