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A simple example: Rubik’s cube

• Simple to describe
• 43e18 different configurations
• ...but “efficient” algorithms are known
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A simple example: Rubik’s cube

≼

• What if we know how to solve a 3x3 cube...
• ...but not a 2x2?
• Solution: Reduce the problem to a 3x3 cube
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A simple example: Rubik’s cube

• Map elements of the 2x2 cube to elements of the 3x3 cube
• Map operations on the 2x2 cube to operations on the 3x3
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A simple example: Rubik’s cubes

?

• Isomorphisms?
• Subinstance isomorphisms?
• No homomorphism exists?
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Automated planning

Classical planning
• Model of the problem → sequence of actions π to solve it
▶ PSPACE-complete

Problem description,
actions and goal

Automated
planner

Plan
π

Topic of this talk: comparison between planning instances

1. Computational complexity
2. Algorithmic procedure
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STRIPS language

STRIPS instance: P = ⟨F , I ,O,G ⟩
▶ F : fluents (boolean variables that describe the current state)
▶ I , G ⊆ F : initial state and goal
▶ O: operators of the form:

o = ⟨pre(o), eff+(o), eff−(o)⟩ ∈ (2F )3


col(up-top-right, blue),
col(up-low-left, red),

. . .

 →


col(up-top-right, yellow),

col(up-low-left, red),
. . .


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STRIPS Isomorphism

STRIPS Isomorphism - SI

Input: Two STRIPS instances P and P ′ = ⟨F ′, I ′,O ′,G ′⟩
Output : u : F −→ F ′ and v : O −→ O ′ one-to-one s.t.

• For all o ∈ O, v(o) = ⟨u(pre(o)),u(eff+(o)),u(eff−(o))⟩
• I ′ = u(I )

• G ′ = u(G )

∼=
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Complexity

STRIPS Isomorphism Problem SI - Complexity
SI is GI-complete

Complexity class GI
Problems polytime-reducible to the graph isomorphism problem

How hard is it?

• Theoretical: 2O(log n)3 [Babai, 2016]
• In practice: Efficient solvers exist
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STRIPS subinstance isomorphisms

Homogeneous STRIPS subinstance isomorphisms - SSI-H

Input: Two STRIPS instances P and P ′ = ⟨F ′, I ′,O ′,G ′⟩
Output : Two functions u : F −→ F ′ et v : O −→ O ′ s.t.

• u is injective
• For all o ∈ O, v(o) = ⟨u(pre(o)),u(eff+(o)),u(eff−(o))⟩

≼
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STRIPS subinstance isomorphisms

STRIPS subinstance isomorphism - SSI

Input: (Same as above)
Output: A homogeneous STRIPS subinstance isomorphism s.t.

• I ′ = u(I )

• G ′ = u(G )

≼

M. C. Cooper, A. Lequen, F. Maris Homomorphisms of STRIPS instances



12/19

Complexity results

STRIPS subinstance isomorphism SSI - Complexity
SSI is NP-complete

Proof idea
Reduction from Hamiltonian Cycle

Remark
Easier to find a subinstance isomorphism (NP-c) than to solve the

planning problem (PSPACE-c)

Algorithm
1. Constraint propagation-based preprocessing
2. Compilation into SAT
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Algorithm - Preprocessing

Preprocessing
▶ Aim: Prune inconsistent mappings:

• f ∈ F → f ′ ∈ F ′

• o ∈ O → o′ ∈ O ′

Idea

Maintain domains for the images of each fluents/actions, and prune
them through arc consistency

Subroutine
Adapted from AC3
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Constraint propagation - domains initialization

Fluents
▶ Initial domain chosen among these: (if applicable)

• If f ∈ I then D(f ) = I′

• . . .
• Else D(f ) = F ′ \ (I ′ ∪ G ′)

Actions
▶ Action profile: vector of Nk

• profile(o) = ⟨|pre(o)|, . . . , |eff−(o)|, |sd(o)|⟩
• sd(o): strict-delete fluents (f ∈ pre(o) ∧ f ∈ eff−(o))

▶ D(o) = {o ′ | profile(o ′) ≥ profile(o)}
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Arc consistency conditions

Prune operators not supported by some fluent

Dv (o) ⊆
{
o ′ | ∀f ∈ pre(o), ∃f ′ ∈ pre(o ′) s.t. f ′ ∈ Du(f ) ∧ . . .

}
Prune fluents not supported by some operator

Du(f ) ⊆

 f ′

∣∣∣∣∣∣
∀o ∈ O where f ∈ pre(o),
∃o ′ ∈ Dv (o) s.t. f ′ ∈ pre(o ′)
∧ . . .


D(o)

D(f )

o = ⟨pre(o), . . .⟩

f

o ′ = ⟨pre(o ′), . . .⟩

f ′

Supports∀o, f ∈ pre(o)
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Results - SSI-H

Homogeneous STRIPS subinstances solved before cutoff
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• Blue: Preprocessing on
• Orange: Preprocessing off
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Results - SSI

STRIPS subinstances solved before the time cutoff
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Observations - Preprocessing

Preprocessing step

• Lasts < 3 seconds in most cases
• Sometimes sufficient to detect unsolvable instances

Efficiency can vary with the domain

• Between 70% and > 99% of associations pruned (for 5
domains out of 7)

• < 2% of associations pruned (for 2 domains out of 7)
▶ Less efficient for domains with lots of symetries
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Conclusion

Complexity
▶ Isomorphism: GI-complete
▶ Subinstance isomorphism: NP-complete

Algorithm
• Compilation to SAT
• Preprocessing: constraint propagation-based
▶ Feasible in practice

Future work:
▶ Practical: Exploit symmetries
▶ Theoretical:

• Study properties carried over by homomorphisms
• Find other forms of comparison relations
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SI complexity - Proof sketch

SI is GI-hard
▶ Reduction from the graph isomorphism problem

G(V ,E ) ⇒ PG = ⟨V , IG ,OG ,GG⟩

SI is in GI
▶ Reduction to the finite models isomorphism problem

M = ⟨V ,R1, . . . ,Rn⟩
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SSI complexity - Proof sketch

STRIPS subinstance isomorphism SSI - Complexity
SSI is NP-complete

Reduction from Hamiltonian Cycle
• Encode input G(V ,E ) into STRIPS
• Encode a cycle graph of size |V | into STRIPS
• A STRIPS subsintance isomorphism exists iff a cycle exists in G
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Encode all plans...

Planning as satisfiability [Kautz et al., 1992]

STRIPS Problem
Π

CNF Formula
φn

Plan
π

Exponential NP-c Acting

Offline Online

▶ φn: State-space encoded in CNF, up to n actions (horizon n)
▶ Bijection: models of φn ⇔ plans of size n

Our Proposal

STRIPS Problem
Π

L Formula
φn

Plan
π

Harder Easier Acting

▶ L: some propositional language to be determined
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