
General and Reusable Indexical Policies and Sketches
Blai Bonet1 Dominik Drexler2 Hector Geffner3,2

1Universitat Pompeu Fabra, Spain
2Linköping University, Sweden

3RWTH Aachen University, Germany

Introduction

Generalized planning is about finding plans

that solve many instances of common domain

We have shown policies (and sketches) can be

expressed by sets of feature-based rules

Rules classify transitions as good or bad w/o

reference to actions: generality is obtained

Rules powerful, effective, and learnable

Also, foundation for GNNs/RL approach

Limitations:

Policies that enable/disable rule subsets

No way to “fix attention at given object”

No principled way to reuse/compose modules

Contributions

Internal memory states, that permit to have

flow of control to enable/disable rules

Indexical features in terms of registers

Modules wrap policies and sketches in units

Example: Delivery

Problem: packages in a grid to delivered

Two sketches of different “complexity”:

(Width 2) single rule {n > 0} 7→ {n↓} where n is num

of und. pkgs

(Width 0, policy) 4 rules where p and t are distance

to closest underlivered package and target cell, resp.:

{¬H, p > 0} 7→ {p↓, t?} Approach package

{¬H, p = 0} 7→ {H} Pick packag

{H, t > 0} 7→ {t↓} Approach target

{H, t = 0} 7→ {¬H, n↓, p?} Deliver package

Problems, Features, and Rules

Collections Q of instances over a common

planning domain D

Sketch for Q is set of rules C 7→ E based on

features over domain D which can be Boolean

or numerical. C contains p and ¬p, and n > 0
and n = 0, E contains p, ¬p, and p?, and n↓, n↑,
and n?
State pair (s, s′) is compatible with C 7→ E if C
satisfied at s, and values change across (s, s′)
according E: s′ ≺r s, and s′ ≺R s if r ∈ R

SerializedWidth and Algorithms

Width measures comp. of finding opt. plan. If

w(P ) ≤ k, opt. plan in O(N2k−1) with IW(k)
Sketch R splits P into subproblems P [s], like
P , but initial state s and goals s′ that are either
goal of P , or s′ ≺R s

R has serialized width ≤ k on class Q if for P
in Q, subproblems P [s] have width ≤ k

IW(k) is a BFS that prunes nodes that don’t

discover k-tuple of atoms. IW(k) runs in
O(N2k−1) time, N is number of atoms

If w(Q) ≤ k, IW(k) solves any P in Q in ptime

IW runs IW(i), i = 0, 1, 2, . . . , N where N is

number of atoms

Algorithm SIWR for Solving
Problemswith Sketches

Algorithm: SIWR search given sketch R
1: Input: Sketch R over features Φ
2: Input: Planning problem P with initial state s0 in

which the features in Φ are well defined

3: s← s0
4: while s is not a goal state of P do

5: Run IW from s to find s′ with s′ goal, or s′ ≺R s
6: if s′ is not found return UNSOLVABLE

7: s← s′

8: return path from s0 to the goal state s

R is acyclic in P if no sequence s0, s1, . . . , sn

such that si+1 ≺R si, and sn = s0
Sieve checks if R is terminating. If so R is

acyclic, and #subp. is polynomial for any P

If R is terminating and w(Q) ≤ k, SIWR solves

any P in Q in polynomial time

General Sketch for on(x, y)

Sketch for class Qon of width 2

Sketch for class Qon of problems with atomic goal on(x, y)
definedwith numerical n that counts the number of blocks

above x or y, and On that represents whether x is on y.
Set of features is Φ = {On, n}, and rules:

{n > 0} 7→ {n↓} Put block away from x or y

{n = 0,¬On} 7→ {On, n?} Stack x on y

Memory, Registers, and Indexicals

Sketch with memory is 〈M, Φ, m0, R〉 where M
is memory states, Φ is features, m0 is initial
memory, and R is rules (m, C) 7→ (E, m′)
where C 7→ E is standard rule, and m and m′

are memory states

Registers store objects, that can be referred in

features that become indexical

Registers R = {r0, r1, . . .} contain objects

selected with using new concepts C and roles R

Indexical feature is function of state and

registers; like “dist. to object stored in r0”

Effects Load(C, r) to update r. Rule with
Load(C, r) has condition C > 0, single load

effect, and also φ? for all φ in Φ(r)
Rules with loads called internal, other external

Clearing Multiple Blocks

Indexical policy for the class Qclear∗

Class Qclear∗ of problems whose goal is conjunction of

clear(x) atoms. Concept C contains blocks to be cleared

Policy πclear∗ with 5 memory states, 2 registers, concept N

for blocks in C that are not clear, indexical T for topmost

block above r0, Boolean H iff some held, and Boolean A
iff block in r1 is above some in C.

m0 ‖ {H} 7→ {¬H,N?} ‖m1
m0 ‖ {¬H} 7→ {} ‖m1

m1 ‖ {N> 0} 7→ {Load(N, r0), T?} ‖m2
m2 ‖ {T> 0} 7→ {Load(T, r1), A?} ‖m3
m2 ‖ {T= 0} 7→ {} ‖m1

m3 ‖ {¬H, A} 7→ {H,¬A,N?, T?} ‖m4
m4 ‖ {H} 7→ {¬H} ‖m2
m4 ‖ {H} 7→ {¬H,N↓} ‖m2

Reusable Modules

Module is 〈args, Z, M,R, Φ, m0, R〉 where
args = 〈x1, x2, . . . , xn〉 is arguments, Z and Φ
are features, M is memory, R is registers,

m0 ∈M is initial memory, and R is rules

Features in Φ used in rules may depend on

arguments, registers, and features in Z

New call and do rules to call other modules,

and execute ground actions

Call/do rules (m, C) 7→ (name(v1, . . . , vn), m′)
where m and m′ are memory, C is condition,

name is module or action schema name, and

each value vi is of appropriate type

If call rule, sketch for module name executed

until no rules applicable, and control returned

to m′. If do rule, apply ground action

name(o1, . . . , on), where oi belongs to vi, and

control returned at m′

Solving Blocksworld Problems

Module tower(O, X) for building a single tower
Aimed at class Qtower of problems where blocks to be

stacked in single tower achieving ∧k
i=1on(xi, xi−1) and

ontable(x0). Module is 〈〈O, X〉, Z, M,R, Φ, m0, R〉 where
O is role argument that contains pairs {(xi, xi−1) | i =
1, ..., k}, and X is concept with lowest misplaced block in

target tower

Other elements are Z = ∅, M = {m0, m1, . . . , m3}, R =
{r0}, and Φ = {M,W} where M is indexical that contains

block to be placed above r0 according to O, if any, and, W

contains block directly below r0, if any, according to the

target tower O.

% Module tower(O, X)
m0 ‖ {X> 0} 7→ {Load(X, r0),M?,W?} ‖m1
m1 ‖ {W= 0} 7→ on-table(r0) ‖m2
m1 ‖ {W> 0} 7→ on(r0,W) ‖m2
m2 ‖ {M> 0} 7→ tower(O,M) ‖m3

Module blocks(O) for arbitrary towers
Aimed at class Qblocks of problems for building many tar-

get towers, takes single role argument O. Module is tu-

ple 〈〈O〉, Z, M,R, Φ, m0, R〉 where Z = ∅, M = {m0, m1},
R = {r0}, and Φ = {L} where L is contains the lowest

misplaced blocks in O

% Module blocks(O)
m0 ‖ {L> 0} 7→ {Load(L, r0)} ‖m1
m1 ‖ {} 7→ tower(O, r0) ‖m0

Conclusions and FutureWork

Extensions to make policies and sketches

more expressive and reusable: (1) internal

memory states, (2) indexical concepts and

features, and (3) modules that wrap up policies

and sketches

Future work: learn policies and sketches

bottom-up, theoretical properties, etc


