General and Reusable Indexical Policies and Sketches

Dominik Drexler² Blai Bonet¹ Hector Geffner^{3,2}

> ¹Universitat Pompeu Fabra, Spain ²Linköping University, Sweden ³RWTH Aachen University, Germany

Introduction

- **Generalized planning** is about finding plans that solve many instances of common domain
- We have shown policies (and sketches) can be expressed by sets of **feature-based rules**
- Rules classify transitions as good or bad w/o reference to actions: generality is obtained
- Rules powerful, effective, and learnable
- Also, foundation for GNNs/RL approach

Limitations:

- Policies that enable/disable rule subsets
- No way to "fix attention at given object"
- No principled way to reuse/compose modules

Algorithm SIW_R for Solving **Problems with Sketches**

Algorithm: SIW_R search given sketch R

- 1: Input: Sketch R over features Φ
- 2: Input: Planning problem P with initial state s_0 in which the features in Φ are well defined
- 3: $s \leftarrow s_0$
- 4: while s is not a goal state of P do
- Run IW from s to find s' with s' goal, or $s' \prec_R s$ 5:
- if s' is not found return UNSOLVABLE 6:
- $s \leftarrow s'$ 7:

8: **return** path from s_0 to the goal state s

- R is acyclic in P if no sequence s_0, s_1, \ldots, s_n such that $s_{i+1} \prec_R s_i$, and $s_n = s_0$
- Sieve checks if R is terminating. If so R is **acyclic,** and #subp. is polynomial for any P
- If R is terminating and $w(\mathcal{Q}) \leq k$, SIW_R solves

Reusable Modules

- Module is $\langle \arg S, Z, M, \mathfrak{R}, \Phi, m_0, R \rangle$ where $args = \langle x_1, x_2, \dots, x_n \rangle$ is arguments, Z and Φ are features, M is memory, \Re is registers, $m_0 \in M$ is initial memory, and R is rules
- Features in Φ used in rules may depend on arguments, registers, and features in Z
- New call and do rules to call other modules, and execute ground actions
- Call/do rules $(m, C) \mapsto (\texttt{name}(v_1, \ldots, v_n), m')$ where m and m' are memory, C is condition, name is module or action schema name, and each value v_i is of appropriate type
- If *call rule*, sketch for module **name** executed until no rules applicable, and control returned

Contributions

- Internal memory states, that permit to have flow of control to enable/disable rules
- Indexical features in terms of registers
- Modules wrap policies and sketches in units

Example: Delivery

- **Problem:** packages in a grid to delivered
- Two sketches of different "complexity":
 - (Width 2) single rule $\{n > 0\} \mapsto \{n\downarrow\}$ where *n* is num of und. pkgs
 - (Width 0, policy) 4 rules where p and t are distance to **closest** underlivered package and target cell, resp.:

$\{\neg H, p > 0\} \mapsto \{p \downarrow, t?\}$
$\{\neg H, p = 0\} \mapsto \{H\}$
$\{H, t > 0\} \mapsto \{t \downarrow\}$
$\{H, t = 0\} \mapsto \{\neg H, n \downarrow, p?\}$

Approach package Pick packag Approach target Deliver package

Problems, Features, and Rules

- Collections Q of instances over a common planning domain D
- Sketch for \mathcal{Q} is set of rules $C \mapsto E$ based on features over domain D which can be Boolean or numerical. C contains p and $\neg p$, and n > 0and n = 0, E contains p, $\neg p$, and p?, and n\downarrow, n\uparrow, and n?

any P in Q in **polynomial time**

General Sketch for on(x, y)

Sketch for class Q_{on} of width 2

Sketch for class \mathcal{Q}_{on} of problems with atomic goal on(x, y)defined with numerical *n* that counts the number of blocks above x or y, and On that represents whether x is on y. Set of features is $\Phi = \{On, n\}$, and rules:

 $\{n > 0\} \mapsto \{n\downarrow\}$ Put block away from x or y $\{n=0, \neg On\} \mapsto \{On, n?\}$ Stack x on y

Memory, Registers, and Indexicals

- Sketch with memory is $\langle M, \Phi, m_0, R \rangle$ where M is memory states, Φ is features, m_0 is initial memory, and R is rules $(m, C) \mapsto (E, m')$ where $C \mapsto E$ is standard rule, and m and m'are memory states
- Registers store objects, that can be referred in features that become indexical
- Registers $\mathfrak{R} = {\mathfrak{r}_0, \mathfrak{r}_1, \ldots}$ contain objects selected with using new concepts c and roles R
- Indexical feature is function of state and registers; like "dist. to object stored in \mathfrak{r}_0 "
- Effects $Load(c, \mathbf{r})$ to update \mathbf{r} . Rule with $Load(c, \mathbf{r})$ has condition c > 0, single load effect, and also ϕ ? for all ϕ in $\Phi(\mathbf{r})$

to m'. If do rule, apply ground action $name(o_1, \ldots, o_n)$, where o_i belongs to v_i , and control returned at m'

Solving Blocksworld Problems

Module tower(o, x) for building a single tower

Aimed at class \mathcal{Q}_{tower} of problems where blocks to be stacked in single tower achieving $\wedge_{i=1}^k on(x_i, x_{i-1})$ and ontable(x_0). Module is $\langle \langle O, X \rangle, Z, M, \mathfrak{R}, \Phi, m_0, R \rangle$ where O is role argument that contains pairs $\{(x_i, x_{i-1}) \mid i =$ 1, ..., k, and x is concept with lowest misplaced block in target tower

Other elements are $Z = \emptyset$, $M = \{m_0, m_1, \ldots, m_3\}$, $\Re =$ $\{\mathfrak{r}_0\}$, and $\Phi = \{M, W\}$ where M is indexical that contains block to be placed above \mathbf{r}_0 according to O, if any, and, W contains block directly below \mathbf{r}_0 , if any, according to the target tower O.

% Module tower(O, X)

```
m_0 || \{X > 0\} \mapsto \{Load(X, \mathfrak{r}_0), M?, W?\} || m_1
m_1 \parallel \{ \mathsf{W} = 0 \} \mapsto \texttt{on-table}(\mathfrak{r}_0) \parallel m_2
m_1 \parallel \{ \mathbb{W} > 0 \} \mapsto \mathsf{on}(\mathfrak{r}_0, \mathbb{W}) \parallel m_2
m_2 \parallel \{ \mathsf{M} > 0 \} \mapsto \mathsf{tower}(\mathsf{O}, \mathsf{M}) \parallel m_3
```

Module blocks(o) for arbitrary towers

Aimed at class \mathcal{Q}_{blocks} of problems for building many target towers, takes single role argument O. Module is tuple $\langle \langle O \rangle, Z, M, \mathfrak{R}, \Phi, m_0, R \rangle$ where $Z = \emptyset, M = \{m_0, m_1\},$ $\Re = \{r_0\}$, and $\Phi = \{L\}$ where L is contains the lowest misplaced blocks in O

% Module **blocks**(0)

• State pair (s, s') is **compatible** with $C \mapsto E$ if C satisfied at s, and values change across (s, s')according E: $s' \prec_r s$, and $s' \prec_R s$ if $r \in R$

Serialized Width and Algorithms

- Width measures comp. of finding opt. plan. If $w(P) \leq k$, opt. plan in $\mathcal{O}(N^{2k-1})$ with IW(k)
- Sketch R splits P into subproblems P[s], like P, but initial state s and goals s' that are either goal of P, or $s' \prec_B s$
- R has serialized width $\leq k$ on class Q if for P in \mathcal{Q} , subproblems P[s] have width $\leq k$
- IW(k) is a BFS that **prunes** nodes that don't **discover** k-tuple of atoms. IW(k) runs in $\mathcal{O}(N^{2k-1})$ time, N is number of atoms
- If $w(\mathcal{Q}) \leq k$, IW(k) solves any P in \mathcal{Q} in ptime
- IW runs IW(i), $i = 0, 1, 2, \dots, N$ where N is number of atoms

• Rules with loads called *internal*, other *external*

Clearing Multiple Blocks

Indexical policy for the class \mathcal{Q}_{clear^*}

Class Q_{clear^*} of problems whose goal is conjunction of clear(x) atoms. Concept C contains blocks to be cleared Policy π_{clear^*} with 5 memory states, 2 registers, concept N for blocks in C that are not clear, indexical T for topmost block above \mathfrak{r}_0 , Boolean H iff some held, and Boolean A iff block in \mathfrak{r}_1 is above some in C.

 $m_0 \parallel \{H\} \mapsto \{\neg H, \mathbb{N}?\} \parallel m_1$ $m_0 \| \{ \neg H \} \mapsto \{ \} \| m_1$

```
m_1 || \{ N > 0 \} \mapsto \{ Load(N, \mathfrak{r}_0), T? \} || m_2
m_2 || \{ T > 0 \} \mapsto \{ Load(T, \mathfrak{r}_1), A? \} || m_3
m_2 \parallel \{ \top = 0 \} \mapsto \{ \} \parallel m_1
```

 $m_3 \parallel \{\neg H, A\} \mapsto \{H, \neg A, \mathbb{N}?, \mathbb{T}?\} \parallel m_4$ $m_4 \parallel \{H\} \mapsto \{\neg H\} \parallel m_2$ $m_4 \parallel \{H\} \mapsto \{\neg H, \mathbb{N}\downarrow\} \parallel m_2$

 $m_0 || \{L > 0\} \mapsto \{Load(L, \mathfrak{r}_0)\} || m_1$ $m_1 \parallel \{\} \mapsto \texttt{tower}(\bigcirc, \mathfrak{r}_0) \parallel m_0$

Conclusions and Future Work

- Extensions to make policies and sketches more expressive and reusable: (1) internal memory states, (2) indexical concepts and features, and (3) modules that wrap up policies and sketches
- Future work: learn policies and sketches bottom-up, theoretical properties, etc