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Motivation

More expressive languages for encoding and learning general policies and sketches
that support:

• Reuse: ability to call other policies by passing parameters

▷ Composition and orchestration of subpolicies
▷ Bottom-up construction of hierachies, as opposed to top-down
▷ Answers: “Can policy for on(x, y) be reused to construct arbitrary towers?”

• Indexicals: ability to refer to objects functionally, not by name

▷ Features for capturing general policies/sketches simplified
▷ Active perception: what to observe and when
▷ Determine action to do without considering other actions/transitions
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Related Research Threads

• Planning programs and inductive programming [2, 11, 12, 5].

▷ Dreamcoder: Growing generalizable knowledge with program learning. K. Ellis et al.; 2020

▷ Generalized planning as heuristic search. J. Segovia, S. Jimenez, A. Jonsson, AIJ 2021

• General policies [9, 10, 6], [13], [15, 8, 14].

▷ Learning generalized policies using concept languages. M. Martin, H. G., KR 2000

• Deictic representations [4, 1, 3, 7].

▷ David Chapman. Penguins can make cake. AI Magazine, 1989

▷ Deictic codes for the embodiment of cognition. D. Ballard et al., BBS 1997

▷ The thing that we tried didn’t work very well: Deictic representation in RL, S. Finney et al.,

UAI 2022.
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Example: Pick up green blocks; Ballard et al. 1997
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This Work

Extensions to the language of general policies and sketches:

• Indexical pointers to objects

• Memory states

• Ground actions

• Modules that call other modules (reuse)
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Example: General Policy for clear(x)

• Policy π for class Qclear of problems with goal clear(x) in Blocks:

{¬H,n> 0} 7→ {H,n↓}
{H,n> 0} 7→ {¬H}

• Features Φ = {H,n}: ’holding’ and ’number of blocks above x’

• Meaning:

▷ If ¬H & n> 0, move to successor state where H holds and n decreases

▷ If H & n> 0, move to successor state where ¬H holds, n doesn’t change

• Shortcomings:

▷ Policy doesn’t select actions directly; e.g. pickup(A), if A top block above x

▷ Feature n for ‘number of blocks above x’, is “complex”
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Example: New indexical policy for clear(x)

Concepts: used as features and to sample objects

• H1 Boolean, whether block in r1 is being held

• Table1: Boolean, whether block in r1 on table

• X: concept only contains given block x

• T0: concept that contains block on block in register r0 (if any)

• T1: concept that contains block on block in register r1 (if any)

• Initial memory state is always m0; rule application change mi

% Internal rules (update registers and internal memory; no state transitions involved)

r0 = m0 ∥ {X> 0} 7→ {Load(X, r0),T0?} ∥m1 (Load x into register r0)

r1 = m1 ∥ {T0> 0} 7→ {Load(T0, r1),T1?} ∥m2 (Load block on x in r1, if any)

r2 = m2 ∥ {T1> 0} 7→ {Load(T1, r1),T1?} ∥m2 (Loop. Load block on r1 in r1

r3 = m2 ∥ {T1=0} 7→ {} ∥m3 until no such blocks, then

% External rules (state transitions involved)

r4 = m3 ∥ {¬H1} 7→ {H1} ∥m3 Unstack r1)

r5 = m3 ∥ {H1} 7→ {Table1,¬H1} ∥m1 (Put block being held on table, and loop)
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Example: Execution of new indexical policy for clear(x)
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• Initially, load x in register r0; equivalenty, mark x with r0

• Put r1 mark on block that is on the one marked with r0

• Move r1 mark to block that is on the one marked with r1

• Until block with r1 mark is clear and can be picked up directly
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Extended Sketch/Policy Language

• Concepts C (unary predicates) used explicitly as Boolean features, C> 0, nu-
merical features C↓, and for sampling objects

• Registers ri can be “loaded” with objects sampled from concepts; Load(C, ri);
registers are concepts too.

• Memory states mi control flow along with Boolean conditions; e.g.,
m1 ∥ {C} 7→ {E} ∥m2

• Rules with load effects or empty effects deemed as internal rules; others as
external rules

• Memory states of internal rules and external rules different

• See paper for formal syntax and semantics
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Modules: Reusing Policies

• Policies and sketches wrapped into modules

• Modules may call other modules and do recursion passing parameters

• Execution model uses a stack and caller/callee protocol, as in prog. languages

• Orchestration of collections {mod0, mod1, mod2, . . .} of modules

• Additional external rules in modules:

▷ Call rules: m ∥C 7→ mod(C1,C2, . . . ,Ck) ∥m′ where C is condition, and m
and m′ are memory states, to call mod with C1, . . . ,Ck as arguments

▷ Do rules: m ∥C 7→ act(C1,C2, . . . ,Ck) ∥m′ to apply a ground action
act(o1, o2, . . . , ok) with objects oi ∈ Ci, for i = 1, 2, . . . , k
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Example: Modules for on(x, y)

Module On(X,Y):

r0 = m0 ∥ {¬On} 7→ Clear(X) ∥m1 (Call Clear with argument X)

r1 = m1 ∥ {} 7→ Clear(Y) ∥m2 (Call Clear with argument Y)

r2 = m2 ∥ {¬HX} 7→ {HX} ∥m3 (Pick block x, either unstack or pickup)

r3 = m3 ∥ {HX} 7→ stack(X,Y) ∥m3 (Apply stack to put x on y)

Module Clear(X):

r0 = m0 ∥ {X> 0} 7→ {Load(X, r0),T0?} ∥m1 (Load x in register r0)

r1 = m1 ∥ {T0> 0} 7→ {Load(T0, r1),T1?} ∥m2 (Load block above x in r1, if any)

r2 = m2 ∥ {T1> 0} 7→ {Load(T1, r1),T1?} ∥m2 (Loop. Load block above r1 in r1)

r3 = m2 ∥ {T1=0} 7→ {} ∥m3 (Go to external rules)

r4 = m3 ∥ {¬H} 7→ unstack(r1,B) ∥m3 (Apply unstack to pick r1)

r5 = m3 ∥ {H} 7→ putdown(r1) ∥m1 (Apply putdown to put r1 on table)
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Example: Building One Tower with Module Tower(O,X)

• Objective is to build tower
∧k

i=1 on(xi, xi−1) ∧ ontable(x0)

• Role argument O = {(xi, xi−1) | i = 1, . . . , k}

• X is concept for lowest block in tower that is misplaced

• M is concept for block to be placed on r0 according to O (if any)

• W is concept for block below r0 according to O (if any)

Module Tower(O,X):

r0 = m0 ∥ {X > 0} 7→ {Load(X, r0),M?,W?} ∥m1 (Load X into register r0)

r1 = m1 ∥ {W =0} 7→ On-Table(r0) ∥m2 (On-Table to put X on table)

r2 = m1 ∥ {W > 0} 7→ On(r0,W) ∥m2 (On(r0,W) to well-place r0)

r3 = m2 ∥ {M > 0} 7→ Tower(O,M) ∥m3 (Continue building tower from M)
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Example: Building Many Towers

• Argument O is role that contains the pairs describing the towers to build

• L is concept for lowest misplaced blocks according to O

Module Blocks(O):

r0 = m0 ∥ {L> 0} 7→ {Load(L, r0)} ∥m1 (Load X into register r0)

r1 = m1 ∥ {} 7→ Tower(O, r0) ∥m0 (Build tower on r0)
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Summary. Future

Language extensions for encoding and learning general policies and sketches:

• Reuse and bottom up composition of policies

• Don’t learn policies from scratch; resue those learned

• Indexicals (registers) simplify features, determine actions to do, active perception

• Interpreter available, but not learning yet

• Limitations. Language is:

▷ “too much”: hard to learn and verify, too many alternative encodings
▷ “too little”: flexibility lacking for handling negative interactions

• One step; others to follow
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