
On Policy Reuse: An Expressive Language

for Representing and Executing Policies

that Call Other Policies

Blai Bonet, Dominik Drexler, Hector Geffner

ICAPS, 2024

Hector Geffner
RWTH Aachen University

Aachen, Germany

Linköping University
Linköping, Sweden



Motivation

More expressive languages for encoding and learning general policies and sketches
that support:

• Reuse: ability to call other policies by passing parameters

▷ Composition and orchestration of subpolicies
▷ Bottom-up construction of hierachies, as opposed to top-down
▷ Answers: “Can policy for on(x, y) be reused to construct arbitrary towers?”

• Indexicals: ability to refer to objects functionally, not by name

▷ Features for capturing general policies/sketches simplified
▷ Active perception: what to observe and when
▷ Determine action to do without considering other actions/transitions

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 2



Related Research Threads

• Planning programs and inductive programming [2, 11, 12, 5].

▷ Dreamcoder: Growing generalizable knowledge with program learning. K. Ellis et al.; 2020

▷ Generalized planning as heuristic search. J. Segovia, S. Jimenez, A. Jonsson, AIJ 2021

• General policies [9, 10, 6], [13], [15, 8, 14].

▷ Learning generalized policies using concept languages. M. Martin, H. G., KR 2000

• Deictic representations [4, 1, 3, 7].

▷ David Chapman. Penguins can make cake. AI Magazine, 1989

▷ Deictic codes for the embodiment of cognition. D. Ballard et al., BBS 1997

▷ The thing that we tried didn’t work very well: Deictic representation in RL, S. Finney et al.,

UAI 2022.

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 3



Example: Pick up green blocks; Ballard et al. 1997

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 4



This Work

Extensions to the language of general policies and sketches:

• Indexical pointers to objects

• Memory states

• Ground actions

• Modules that call other modules (reuse)

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 5



Example: General Policy for clear(x)

• Policy π for class Qclear of problems with goal clear(x) in Blocks:

{¬H,n> 0} 7→ {H,n↓}
{H,n> 0} 7→ {¬H}

• Features Φ = {H,n}: ’holding’ and ’number of blocks above x’

• Meaning:

▷ If ¬H & n> 0, move to successor state where H holds and n decreases

▷ If H & n> 0, move to successor state where ¬H holds, n doesn’t change

• Shortcomings:

▷ Policy doesn’t select actions directly; e.g. pickup(A), if A top block above x

▷ Feature n for ‘number of blocks above x’, is “complex”

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 6



Example: New indexical policy for clear(x)

Concepts: used as features and to sample objects

• H1 Boolean, whether block in r1 is being held

• Table1: Boolean, whether block in r1 on table

• X: concept only contains given block x

• T0: concept that contains block on block in register r0 (if any)

• T1: concept that contains block on block in register r1 (if any)

• Initial memory state is always m0; rule application change mi

% Internal rules (update registers and internal memory; no state transitions involved)

r0 = m0 ∥ {X> 0} 7→ {Load(X, r0),T0?} ∥m1 (Load x into register r0)

r1 = m1 ∥ {T0> 0} 7→ {Load(T0, r1),T1?} ∥m2 (Load block on x in r1, if any)

r2 = m2 ∥ {T1> 0} 7→ {Load(T1, r1),T1?} ∥m2 (Loop. Load block on r1 in r1

r3 = m2 ∥ {T1=0} 7→ {} ∥m3 until no such blocks, then

% External rules (state transitions involved)

r4 = m3 ∥ {¬H1} 7→ {H1} ∥m3 Unstack r1)

r5 = m3 ∥ {H1} 7→ {Table1,¬H1} ∥m1 (Put block being held on table, and loop)

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 7



Example: Execution of new indexical policy for clear(x)

b3

b2

b1

xr0

T0 = {b1}

b3

b2

b1

xr0

r1

T0 = {b1}
T1 = {b2}

b3

b2

b1

xr0

r1

T0 = {b1}
T1 = {b3}

b3

b2

b1

xr0

r1

T0 = {b1}
T1 = ∅

• Initially, load x in register r0; equivalenty, mark x with r0

• Put r1 mark on block that is on the one marked with r0

• Move r1 mark to block that is on the one marked with r1

• Until block with r1 mark is clear and can be picked up directly

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 8



Extended Sketch/Policy Language

• Concepts C (unary predicates) used explicitly as Boolean features, C> 0, nu-
merical features C↓, and for sampling objects

• Registers ri can be “loaded” with objects sampled from concepts; Load(C, ri);
registers are concepts too.

• Memory states mi control flow along with Boolean conditions; e.g.,
m1 ∥ {C} 7→ {E} ∥m2

• Rules with load effects or empty effects deemed as internal rules; others as
external rules

• Memory states of internal rules and external rules different

• See paper for formal syntax and semantics

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 9



Modules: Reusing Policies

• Policies and sketches wrapped into modules

• Modules may call other modules and do recursion passing parameters

• Execution model uses a stack and caller/callee protocol, as in prog. languages

• Orchestration of collections {mod0, mod1, mod2, . . .} of modules

• Additional external rules in modules:

▷ Call rules: m ∥C 7→ mod(C1,C2, . . . ,Ck) ∥m′ where C is condition, and m
and m′ are memory states, to call mod with C1, . . . ,Ck as arguments

▷ Do rules: m ∥C 7→ act(C1,C2, . . . ,Ck) ∥m′ to apply a ground action
act(o1, o2, . . . , ok) with objects oi ∈ Ci, for i = 1, 2, . . . , k

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 10



Example: Modules for on(x, y)

Module On(X,Y):

r0 = m0 ∥ {¬On} 7→ Clear(X) ∥m1 (Call Clear with argument X)

r1 = m1 ∥ {} 7→ Clear(Y) ∥m2 (Call Clear with argument Y)

r2 = m2 ∥ {¬HX} 7→ {HX} ∥m3 (Pick block x, either unstack or pickup)

r3 = m3 ∥ {HX} 7→ stack(X,Y) ∥m3 (Apply stack to put x on y)

Module Clear(X):

r0 = m0 ∥ {X> 0} 7→ {Load(X, r0),T0?} ∥m1 (Load x in register r0)

r1 = m1 ∥ {T0> 0} 7→ {Load(T0, r1),T1?} ∥m2 (Load block above x in r1, if any)

r2 = m2 ∥ {T1> 0} 7→ {Load(T1, r1),T1?} ∥m2 (Loop. Load block above r1 in r1)

r3 = m2 ∥ {T1=0} 7→ {} ∥m3 (Go to external rules)

r4 = m3 ∥ {¬H} 7→ unstack(r1,B) ∥m3 (Apply unstack to pick r1)

r5 = m3 ∥ {H} 7→ putdown(r1) ∥m1 (Apply putdown to put r1 on table)

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 11



Example: Building One Tower with Module Tower(O,X)

• Objective is to build tower
∧k

i=1 on(xi, xi−1) ∧ ontable(x0)

• Role argument O = {(xi, xi−1) | i = 1, . . . , k}

• X is concept for lowest block in tower that is misplaced

• M is concept for block to be placed on r0 according to O (if any)

• W is concept for block below r0 according to O (if any)

Module Tower(O,X):

r0 = m0 ∥ {X > 0} 7→ {Load(X, r0),M?,W?} ∥m1 (Load X into register r0)

r1 = m1 ∥ {W =0} 7→ On-Table(r0) ∥m2 (On-Table to put X on table)

r2 = m1 ∥ {W > 0} 7→ On(r0,W) ∥m2 (On(r0,W) to well-place r0)

r3 = m2 ∥ {M > 0} 7→ Tower(O,M) ∥m3 (Continue building tower from M)

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 12



Example: Building Many Towers

• Argument O is role that contains the pairs describing the towers to build

• L is concept for lowest misplaced blocks according to O

Module Blocks(O):

r0 = m0 ∥ {L> 0} 7→ {Load(L, r0)} ∥m1 (Load X into register r0)

r1 = m1 ∥ {} 7→ Tower(O, r0) ∥m0 (Build tower on r0)

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 13



Summary. Future

Language extensions for encoding and learning general policies and sketches:

• Reuse and bottom up composition of policies

• Don’t learn policies from scratch; resue those learned

• Indexicals (registers) simplify features, determine actions to do, active perception

• Interpreter available, but not learning yet

• Limitations. Language is:

▷ “too much”: hard to learn and verify, too many alternative encodings
▷ “too little”: flexibility lacking for handling negative interactions

• One step; others to follow

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 14



References

[1] Philip E. Agre and David Chapman. What are plans for? Robotics and Autonomous Systems, 6:17–34, 1990.

[2] Javier Segovia Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. Generalized planning with procedural domain
control knowledge. In Proc. ICAPS, pages 285–293, 2016.

[3] Dana H. Ballard, Mary M. Hayhoe, Polly K. Pook, and Rajesh P. N. Rao. Deictic codes for the embodiment of
cognition. Behavioral and Brain Sciences, 20:723–742, 1996.

[4] David Chapman. Penguins can make cake. AI magazine, 10(4):45–45, 1989.

[5] Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt, Armando
Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable, interpretable knowledge with
wake–sleep bayesian program learning. Phil. Trans. R. Soc. A, 381:20220050, 2023.

[6] Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with a policy language bias: Solving
relational markov decision processes. Journal of Artificial Intelligence Research, 25:75–118, 2006.

[7] Sarah Finney, Natalia Gardiol, Leslie Pack Kaelbling, and Tim Oates. The thing that we tried didn’t work very well
: Deictic representation in reinforcement learning. CoRR, abs/1301.0567, 2013.

[8] Sankalp Garg, Aniket Bajpai, and Mausam. Generalized neural policies for relational mdps. In Proc. ICML, 2020.

[9] Roni Khardon. Learning action strategies for planning domains. Artificial Intelligence, 113:125–148, 1999.

[10] Mario Mart́ın and Hector Geffner. Learning generalized policies from planning examples using concept languages.
Applied Intelligence, 20(1):9–19, 2004.

[11] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Computing programs for generalized planning using a
classical planner. Artificial Intelligence, 272:52–85, 2019.

[12] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generalized planning as heuristic search. In ICAPS,
pages 569–577, 2021.

[13] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. A new representation and associated algorithms for
generalized planning. Artificial Intelligence, 175(2):393–401, 2011.

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 15



[14] Simon St̊ahlberg, Blai Bonet, and Hector Geffner. Learning general policies with policy gradient methods. In Proc.
KR, pages 647–657, 2023.

[15] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning for generalised planning.
Journal of Artificial Intelligence Research, 68:1–68, 2020.

On Policy Reuse: Representing Policies that Call Other Policies. Bonet, Drexler, and Geffner. ICAPS 2024 16


