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Abstract. Planning as SAT is, in addition to explicit and symbolic
search, one of the main approaches for solving planning problems. Such
planners proved very successful, especially in combinatorially complex
domains. SAT-based planning has to date focused on the core formalisms
of planning. Notably, there is no SAT-based planner that supports ax-
ioms and derived predicates. In this paper, we present our new planner
AxSAT that supports axioms as well as conditional effects. Furthermore,
we show how to allow for action parallelism using the ∃-step encoding in
the presence of axioms. Our empirical evaluation shows that AxSAT per-
forms favorably compared to state-of-the-art approaches for satisficing
classical planning with axioms, and provides complementary capabilities.

1 Introduction

A central aspect of intelligent decision-making is reasoning before acting, which
involves determining a sequence of actions to transform the current state into a
desired one. Such reasoning problems are typically described as classical planning
tasks in dedicated modeling languages such as PDDL [25]. While PDDL is rich in
modeling features allowing for concise encoding of planning tasks, many of them
are not supported by modern planners. One such feature is the use of axioms,
which provide a means to specify a background theory to derive certain facts
about the world in the current state, and thus often allow for natural, elegant
and efficient modeling and problem specification [43, 21, 26, 15, 40]. Importantly,
axioms enable the modeling of complex action preconditions and goal conditions.
Despite the fact that axioms are an essential modeling feature, i.e., they cannot
simply be compiled away [43], their expressive power poses a challenge to support
them. This is especially true for planners based on the heuristic-search paradigm.
It is challenging to design heuristics (goal-distance estimators) that are both
informative and fast, while taking into account the background theory [42]. In
particular, admissible heuristics used in optimal planning are complex to adapt
[21], but for inadmissible heuristics such as the FF heuristic [18] it poses a
challenge, too. Thus, axioms are often treated naively, making the incorporation
of heuristic estimates difficult.
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In this paper, we focus on planning as satisfiability [23, 32]. We show how
planning tasks with axioms can be encoded as a propositional satisfiability (SAT)
problem with a fixed (parallel) plan length bound. Our approach generalizes ex-
isting SAT planning encodings, such as the sequential encoding, ∀-step encodings
[24], and the ∃-step encoding [10, 32].

While our approach is the first to model planning axioms as boolean satisfi-
ability, there have been related approaches. Bofill et al. [6] considered a domain-
specific SAT implementation of axioms for a puzzle game, which is not easily
generalizable to domain-independent planning. Other works have introduced ax-
iom support for compilations of planning to integer programming and answer-set
programming [26, 9]. None of the approaches supports parallelism, the encod-
ings are purely sequential. Speck et al. [39, 42] showed how to support axioms in
symbolic search. Their dominant approach is to precompute the formulas under
which derived facts become true, in order to replace those facts in the conditions
with the computed formula. While this approach is similar to ours, there are
critical differences. On the theoretical side, based on our encodings, SAT solvers
can infer the same formulas, but it is done lazily, only when necessary to show
satisfiability instead of a precomputation. On the practical side, symbolic search
is mainly used for optimal planning, while SAT-based planning has its merits
mainly in satisficing planning. As we will show empirically, these two approaches
complement each other well: the symbolic search approach of Speck et al. [39,
42] is strong in finding optimal plans, while our SAT-based approach, AxSAT,
shows strong performance in satisficing planning. Overall, AxSAT compares fa-
vorably to state-of-the-art approaches for satisficing planning with axioms such
as the well-known heuristic search planner LAMA [29].

2 Preliminaries

In this section, we provide the necessary background for our work by introducing
classical planning with axioms and planning as satisfiability.

2.1 FDR Planning

We consider planning problems with conditional effects given in Finite Domain
Representation (FDR) [17], of which we describe the base formalism first. States
are described via a set of state variables V, each v ∈ V having its own finite
domain Dv. A partial state s is any partial function from variables V to values.
We write V (s) to denote the set of variables for which s is defined. A state is
a function mapping each variable v to a value Dv, i.e., s : V 7→ Dv. An action
is a pair a = ⟨p, e⟩, where p is a partial state and e is a set of expressions
l ▷ r where l is a partial state and r is a fact of the form v = o for a variable
v ∈ V and a value o ∈ Dv. Given an action a, we write pre(a) to refer to its
precondition p and eff (a) for its effects e. An action a is applicable in a state
s, if s agrees with p for every variable for which p is defined, i.e., if p ⊆ s.
Let e be a set of conditional effects. The firing conditional effects f(e, s) in a
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state s are defined as f(e, s) = {v = o | l ▷ v = o ∈ e, l ⊆ s}. We write
V (f(e, s)) for the variables mentioned in the firing conditional effects. The set
of all effects of conditional effects α(e) is defined as α(e) = {v = o | l ▷ v =
o ∈ e}. Applying a set of conditional effects e to a state s leads to the state
γ(s, e) = {(v, s(v)) | v ̸∈ V (f(e, s))} ∪ f(e, s). Technically, this definition can
lead to conflicts if two firing conditional effects set the same variable to different
values. We assume by definition that this is not possible. Applying a in s leads to
a successor state γ(s, a) = γ(s, e) if applicable, otherwise to ⊥. For a sequence
of actions π = (a1, . . . , an), we define its application to a state s inductively
as γ(s, (a1)) = γ(s, a1) and γ(s, (a1, a2, . . . , an)) = γ(γ(s, a1), (a2, . . . , an)). An
FDR planning problem Π is then specified by its variables V, actions A, initial
state sI , and its goal sG, which is a partial state. A plan that solves this FDR
problem is any sequence of actions π such that sG ⊆ γ(sI , π).

2.2 Derived Predicates and Axioms

In this paper, we use an extension to pure FDR planning: derived predicates [43,
17]. Derived predicates are logical atoms and thus can only have two values: true
and false. To keep our notation clean, we make an explicit distinction between
the original finite domain variables and the derived predicates. To represent
them, we denote the set of derived predicates as D. A partial state s is now a
pair ⟨F, δ⟩, where F is a partial function from the FDR variables V to values and
δ ⊆ D is a set of derived predicates that is true in s. States are partial states for
which F is a total function F : V 7→ Dv. The truth value of derived predicates
is instead determined using a logic-program-style set of rules, called axioms.
An axiom for the derived predicate d ∈ D is a formula of the form

∧
i(vi =

oi) ∧
∧

j dj ∧
∧

k ¬dk → d. It is an implication whose left-hand side can contain
positive conditions on the FDR variables (negation is not allowed here), and
both positive and negative condition on derived predicates. The right-hand side
is a single positive derived predicate d which is defined to be true whenever the
left-hand conditions are satisfied. For an axiom ax, we will write ℓ(ax) to denote
the set of literals on its left-hand side and r(ax) for the derived predicate on its
right-hand side. Furthermore, we write ℓf (ax) to denote the set of conditions
on FDR variable on the left-hand side and ℓ+(ax) and ℓ−(ax) for the positively
and negatively occurring derived predicates respectively. Thus, an axiom can be
written as

∧
(vi=oi)∈ℓf (ax)(vi = oi)∧

∧
dj∈ℓ+(ax) dj ∧

∧
dk∈ℓ−(ax) ¬dk → r(ax). An

axiom ax is applicable in a state ⟨F, δ⟩ iff (1) ∀v = o ∈ ℓ(ax) : F (v) = o, (2)
∀d ∈ ℓ(ax) : d ∈ δ, and (3) ∀¬d ∈ ℓ(ax) : d ̸∈ δ. Applying an axiom ax in a state
⟨F, δ⟩ yields the state ⟨F, δ ∪{r(ax)}⟩. Let A be the set of all axioms of an FDR
problem. Given a pure FDR state F : V 7→ Dv, we define the saturated state
sat(F ) of F under A as a set-inclusion-minimal fixpoint ⟨F, δ⟩ of applying all
axioms ax ∈ A. Intuitively, this means starting with the state ⟨F, ∅⟩, applying all
axioms until no further new axiom is applicable. This definition causes issues if
ℓ(ax) contains negative literals, as the fixpoint might not be unique. We restrict
the set of allowed axioms to Stratified Axiom Programs, for which the fixpoint is
unique [33]. As a tool for this definition and our later work, we define the truth
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dependency graph (TDG) of the derived predicates as follows: G = (D, E), where
D is the set of derived predicates, and we have an edge (di, dj) ∈ E if there is
an axiom ax ∈ A where di ∈ ℓ(ax) or ¬di ∈ ℓ(ax) and dj = r(ax). Next, we
consider the strongly connected components (SCCs) of the TDG. If there is an
axiom ax where ¬di ∈ ℓ(ax) and dj = r(ax) while di and dj are in the same
SCC, then evaluating axioms might have non-unique fixpoints. If there is no such
axiom, then the set of axioms is a Stratified Axiom Program. In this paper, we
only consider such planning problems – notably all domains of the International
Planning Competition5 containing axioms are of this type.

Lastly, we define the application of actions in this setting. An action o
comprises four elements ⟨p, p+D, p

−
D, e⟩ where p is a partial pure FDR state,

p+D, p
−
D ⊆ D, and e is a set of conditional effects (l, l+D, l

−
D) ▷ (v = o) where l

is a partial pure FDR state and l+D, l
−
D ⊆ D. An action ⟨p, p+D, p

−
D, e⟩ is applicable

in a state ⟨F, δ⟩ iff p ⊆ F , p+D ⊆ δ, and p−D ∩ δ = ∅. The firing conditional effects
f(e, s) in a state ⟨F, δ⟩ are defined as f(e, s) = {v = o | l, l+D, l

−
D ▷ v = o ∈ e, l ⊆

F, l+D ⊆ δ, l−D ∩δ = ∅}. Applying a set of conditional effects e to a state s = ⟨F, δ⟩
leads to the state γ(s, e) = sat({(v, F (v)) | v ̸∈ V (f(e, s))} ∪ f(e, s)), i.e., we
apply all FDR effects and then saturate the axioms. Note that thereby the plan-
ner is forced to evaluate all axioms in every state. Application of sequences of
actions is again defined inductively. The initial state is given as a pure FDR
state for which the axioms need to be saturated. The goal comprises p, p+D, p

−
D

mirroring the preconditions of actions. The task is again to find a sequence of
actions that, if applied in the initial state, leads to a goal state. Such a plan is
optimal if there is no shorter sequence of actions that also solve the problem.

2.3 SAT Planning

One means to solve planning problems is via reduction to Boolean satisfiability
(SAT). Given a length bound N , we generate a propositional formula ϕN that
is satisfiable iff there is a plan of at most N actions. This SAT formula ϕN

represents the plan as a sequence of N time steps. To obtain a complete SAT-
based planner, we then iterate over the length bound N until a solution has been
found6. The basic encoding has been proposed by Kautz and Selman [23] – but
is formulated for STRIPS planning only. There is a dedicated encoding of FDR
planning into SAT [19], but its size is cubic in the size of variable domains. We
instead opted to adapting the STRIPS-style encoding to FDR planning directly.
Here, we present the encoding for FDR planning without derived predicates.
The SAT formula comprises two types of variables (v = o)@t indicating that
variable v has value o at time t and a@t indicating that action a is executed at
time t. Whenever the time step is clear from context, typically if the encoding is
repeated for every time step, we will omit the @t to improve readability. For every
variable v ∈ V, we assert that exactly one of its values is true – which can be
split into at least and at most one value. The at-least-one constraint is a simple

5 see https://www.icaps-conference.org/competitions/.
6 There are more intelligent options than pure iteration, which we discuss in Section 6.
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disjunction
∨

o∈Dv
(v = o). For encoding the at-most-one constraint amo(X) for

a set of decision variables X, multiple formulae have been proposed [11, 38].
We use the binomial encoding if |X| ≤ 256 and the binary encoding otherwise.
Preconditions and effects of actions are asserted by implications: ∀(v = o) ∈
pre(a) : a@n → (v = o)@n and

a@n ∧
∧

v′=o′∈l

(v′ = o′)@n → (v = o)@(n+ 1) ∀l ▷ (v = o) ∈ eff (a)

To ensure that the truth value of unchanged variables remains the same, we
introduce the following frame axiom:

¬(v = o)@n ∧ (v = o)@(n+ 1) →
∨
a∈A

l▷v=o∈eff (a)

(a@n ∧
∧

v′=o′∈l

(v′ = o′)@n)

In case of conditional effects with non-empty condition, additional decision vari-
ables via Tseitin encoding [44] are introduced to compactly encode the right-
hand side of the implication. Furthermore, we need to assert that the initial
state and goal are met via (v = o)@1 for sI(v) = o and (v = o)@(N + 1) for
sG(v) = o. Lastly, for the base encoding, we have to assert that at most one
action is performed at every time, i.e., amo({a@n | a ∈ A}).

Some extensions of SAT-encodings to more expressive planning formalisms
have been proposed in the past. These include lifted planning [20] and hierarchi-
cal planning [3, 4, 35, 2, 27]. Similarly, extensions of SAT solving have been used
to solve problems in more expressive planning formalisms, notably quantified
boolean formulae solving (QBF) for lifted planning [37] and SAT modulo theory
solving for temporal and numeric planning [31, 8, 34, 7].

2.4 Parallelism in SAT Planning

On its own, the presented base encoding is not competitive with the state of
the art in search-based planning. To achieve this, action parallelism has been
added to the encoding. Instead of restricting to a single action to be executed at
every time step, one allows for multiple actions – as long as their execution does
not interfere. The most common definition of “execution non-interference” is the
∃-step semantics. There are more relaxed versions (the relaxed-∃-step [45] and
relaxed-relaxed-∃-step semantics [1]), which we do not consider in this paper.

Definition 1 (Based on Rintanen [32]). Let E ⊆ A be a set of actions. We
call this set ∃-step executable in the state s, if there is a total ordering ⟨a1, . . . , an⟩
of the actions in E such that (a1, . . . , an) is applicable in s.

Determining for such a set E whether it is ∃-step executable is NP-complete
[32, Thm. 2.22]. As such, SAT encodings assert and check only a more relaxed
version of this ∃-step criterion. The main idea is that we fix a total order of
all actions A, i.e., A⃗ = ⟨a1, . . . , an⟩ and assert that if a set of actions E is
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executed, then it is executed precisely in this order. This then makes testing for
restricted ∃-step parallelism trivial, as we solely have to check the executability of
subsequences A⃗|E . This restriction is however not enough to ensure that encoding
the executability of the sequence is easy. The ∃-step encoding further asserts:

Definition 2 (Based on Rintanen [32]). Let π = ⟨a1, . . . , an⟩ be a sequence
of actions. We call π ∃-step encodable in s, iff (1) all ai are applicable in s,
(2) ∀i < j∀v ∈ V (pre(aj)) ∩ V (α(eff (ai))) : α(eff (ai))(v) = pre(aj)(v), i.e., no
action deletes something needed by a later action, and (3) ∀i < j∀l ▷ (v′ = o′) ∈
eff (aj)∀v ∈ V (l) ∩ V (α(eff (ai))) : α(eff (ai))(v) = l(v), i.e., no action deletes
the condition of a later effect.

To simplify the SAT encoding, conditions (2) and (3) are independent of
the actual state. By construction if ⟨a1, . . . , an⟩ is ∃-step encodable, it is ∃-step
executable.

We say that an action ai disables an action aj iff the order ⟨ai, aj⟩ would
violate either condition (2) or (3). Operationally, disabling of actions can equiv-
alently be determined using the sets of deleted and needed facts for each action.
For each fact v = o, the set of actions needing this fact – where v = o is either a
precondition or a condition of a conditional effect – is defined as nee(v = o) :=
{a ∈ A | v = o ∈ pre(a)} ∪ {a ∈ A | l ▷ r ∈ eff (a), v = o ∈ l}. The set of
deleting actions is defined as del(v = o) := {a ∈ A | l ▷ v = o′ ∈ eff (a), o ̸= o′}.
Then, an action ai disables aj iff there is a fact v = o such that ai ∈ del(v = o)
and aj ∈ nee(v = o). The disabling graph (DG) encodes the disabling relation
between actions. The DG’s nodes are the actions and there is an edge from ai
to aj iff (i) both are potentially executable in the same state and (ii) ai disables
aj . Determining condition (i) is PSPACE-complete. To approximate, two actions
ai and aj are presumed to be executable in the same state if there is no v ∈ V
such that pre(ai)(v) ̸= pre(aj)(v) while both are defined. To encode the ∃-step
semantics into a SAT formula, we select an ordering of the actions A⃗. If there
is an edge (ai, aj) in the DG, we prefer to have aj before ai in A⃗, in which case
the constraints of Def. 2 are automatically satisfied. If this is not possible due
to cyclic dependencies, we choose any order of the actions involved in the cycle.
Formally, we select A⃗ as the reverse topological order of the condensation7 of the
DG. For every strongly connected component of the DG, we need to encode the
constraints of Def. 2 in the SAT formula. This is done using so-called chains [32].
One chain is generated for every fact (v = o) ensuring that after a deleting action

a ∈ del(v = o) no needing action a′ ∈ nee(v = o) in A⃗ is executed. We omit
details of the encoding and refer the reader to Rintanen [32, Sec. 3.2.2.].

3 Evaluating Axioms in SAT

Our objective is to extend the capabilities of SAT-based planning to being able to
handle derived predicates and axioms efficiently. This comprises two challenges:

7 To condensate a graph, we replace each of its strongly connected components with
a single node.
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firstly, we need to be able to evaluate axioms correctly and efficiently inside the
SAT formula; secondly, we need to integrate axioms into the reasoning of the
∃-step encoding. In this section, we start by addressing the first challenge.

3.1 Using the Truth Dependency Graph

To obtain a compact encoding, we utilize the structural information contained
in the TDG. We observe that if there is no path from di to dj in the TDG,
then determining the truth value of dj is independent of the truth value of
di. Consequently, we consider the strongly connected components (SCCs) and
their dependency structure. Notably, we determine a topological ordering of the
TDG’s SCCs as S⃗ = ⟨S1, . . . , Sn⟩ where the Si are sets of derived predicates
inside an SCC and i < j implies that there is no path in the TDG from a
predicate in Sj to a predicate in Si. For this ordering, the evaluation of the
truth value of any d ∈ Si depends only on the truth value of derived predicates
d′ ∈ Sj with j ≤ i. Since by the same argument, the truth value of d′ does not
depend on d iff j < i, we can evaluate the truth values of the derived predicates in
each SCC one after another. Notably the truth of d ∈ Si depends only the finally
determined truth values of all d′ ∈ Sj with j < i and not on any intermediate
value. As such we can introduce decision variables d∗@n representing the value
of the derived predicate d at time n. The encoding of an SCC Si will only refer
to variables d∗@n for d ∈ Sj with j < i or additional variables internal to the
SCC. Actions a at time n with a precondition on d are similarly encoded with
the implication a@n → d∗@n. To evaluate the derived predicates, we can now
handle the SCCs of the TDG independently of each other.

3.2 Base Encoding

Consider a SCC S of the TDG. In an naive attempt, one could try to simply
convert each axiom into one clause of the SAT formula per time step. This leads
to problems due to self-supporting cycles in the axioms, i.e., we might not find
the smallest fixpoint of axiom evaluation. As an example, suppose there are only
two axioms: d1 → d2 and d2 → d1. In any state, none of these axioms fire, so
both d1 and d2 are false. If we directly add the two axioms as clauses into a SAT
formula, there are two valuation that satisfy them: one where both d1 and d2
are false and one where both are true.

To only allow the first valuation, we need to disallow such self-supporting
cycles. There are multiple methods of doing so. We opted for the conceptually
simplest one: to evaluate the axioms in steps or layers, where derived predi-
cates in layer ℓ can only become true based on the truth values in layer ℓ − 1.
Such an encoding avoids cycles by construction, but can have substantial size
for large SCCs S. Several other methods for breaking cycles have been proposed
in the literature (e.g. [28, 13, 12]). We did not experiment with these more com-
plex encodings so far, as the simpler layer-based encoding was sufficient for the
benchmarks we considered. We consider this to be future work.
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Given the number of layers L, we introduce SAT variables dℓi@n for 0 ≤ ℓ ≤ L
that indicate that di ∈ S is true in layer ℓ for every time step n. Since the
encoding of axioms is identical for every time step, we omit the indication of the
time step from now on. For layer 0, we statically assert all derived predicates to
false (i.e. ¬d0i ). For every layer, we need to force the derived predicate di to true
if the conditions of an axiom ax that has di as a consequent are met. Consider an
axiom ax of the form

∧
(vi=oi)∈ℓf (ax)(vi = oi)∧

∧
dj∈ℓ+(ax) dj∧

∧
dk∈ℓ−(ax) ¬dk →

d. The left-hand side of ax contains two types of derived predicates: those that are
in the current SCC S and those that are part of earlier SCCs. For the latter, we
can use the decision variables dj containing their already determined value. Only
for the variable in the same SCC, we need to consider the layering structure. We
thus introduce the following clause

∧
(vi=oi)∈ℓf (ax)(vi = oi)∧

∧
dj∈ℓ+(ax)∩S dℓ−1

j ∧∧
dk∈ℓ−(ax)∩S ¬dℓ−1

k ∧
∧

dj∈ℓ+(ax)\S d∗j ∧
∧

dk∈ℓ−(ax)\S ¬d∗k → dℓj . Next, we need to
ensure that the derived predicate is true only if there is an axiom that makes it
true. So we need to add a clause of the form dℓj →

∨
ax

(∧
(vi=oi)∈ℓf (ax)(vi = oi)∧∧

dj∈ℓ+(ax)∩S dℓ−1
j ∧

∧
dk∈ℓ−(ax)∩S ¬dℓ−1

k ∧
∧

dj∈ℓ+(ax)\S d∗j ∧
∧

dk∈ℓ−(ax)\S ¬d∗k
)
.

Since this formula is not in CNF, we introduce intermediate Tseitin variables
[44] for the right-hand side of the disjunction, as we do for conditional effects
in the base encoding. We do not have to encode a reason for the axiom to stay
false – as we force it to be true if one of the axioms fire and axioms cannot force
a derived predicate to become false.

Next, we need to determine how many layers to use. Theoretically, it is suf-
ficient to choose the longest simple path inside the SCC S. However, computing
it is NP-complete, and even the approximation is hard within a constant factor
[22]. Thus, we simply use the size of S as an upper approximation. This however
leads to an encoding with at least O(|S|2) many clauses. Lastly, we identify dLi
with the decision variables d∗i containing the value determined for di.

3.3 Efficient Handling Special SCCs Structures

In practice, that is, in our experiments detailed in Section 6, we often find that
some SCCs of the TDG have a special structure. The presented base encoding
for axioms does not take advantage of these structures. Therefore, we propose
two cases for which axioms can be encoded more efficiently.

Implicational SCCs Some domains have derived predicates that express a
notion of reachability, e.g., the fact of x being above y, directly or indirectly.
The axioms related to these derived predicates have a very simple form: di → dj
– denoting that if di is true, then dj must be true. Formally, we distinguish two
types of axioms: axioms ax are external for the SCC S iff ℓ(ax) ∩ S = ∅, i.e., if
no derived predicate of the SCC occurs as an antecedent in ax. Otherwise, they
are internal. An SCC S is implicational, if all internal axioms ax are of the form
di → dj .

For implicational SCCs the truth of the derived predicates depends solely on
the initial values of the derived predicates as set by external axioms. The key
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insight is that external axioms need only to be evaluated once – as the truth
of their antecedents is fixed and cannot change if the SCCs are processed in
topological order. Next, due to the SCC being implicational, a derived predicate
dj is true in the final layer if and only if there is a chain of internal axioms
di → di′ → · · · → dj such that di is set to true by an external axiom.

We can exploit this to reduce the number of layers required to fully evaluate
the axioms to two. For the first layer, we generate the clauses determining the
truth of the d1i variables restricting only the external axioms using the same
encoding as in the general case above. Next, we will determine for every di ∈ S
the set of derived predicates that will turn true if di is true. This can be done by
depth-first search over the internal axioms and results in the set R(di). Similarly,
we compute R−1(di) = {dj | di ∈ R(dj)} – the set of all derived predicates dj
that if true force di to be true. Given an implicational SCC S, we add the
following clauses, evaluating the axioms deriving predicates in S in layer two:
∀di ∈ S∀dj ∈ R(di) : d

1
i → d2j and ∀di ∈ S : d2i →

∨
dj∈R−1(di)

d1j . As before we

identify d2i with the final value d∗i .

One Variable Dependent SCC Implicational SCCs do occur in planning
problems, but are relatively restrictive. We can extend the same idea to a slightly
more complex type of SCCs. In these SCCs, we allow for one additional literal on
the left-hand side of axioms. That is, we consider SCCs S in which all internal
axioms are of the form vk = ok ∧ di → dj , with vk ∈ V, ok ∈ Dvk and di, dj ∈ S.

We use a core property of the FDR formalism: a variable v ∈ V can have only
a single value in each state. For this, we require that the additional literal in all
internal axioms of the SCC refers to the same variable v, i.e., that the axioms
are of the form v = ok ∧ di → dj .

8 We can now split the axioms into sets Aok –
depending on the variables value. If in the current state v = oℓ, we know that
all axioms Aok for k ̸= ℓ will never fire as their antecedents are false, while the
axioms in Aoℓ effectively turn into implicational axioms. We can use a similar
encoding as for the implicational SCCs while adding a guard for the value of
the variable. For this, we compute Rok(di) as the set of all derived predicates
reachable from di using only axioms in Aok and R−1

ok
(di) = {dj | di ∈ Rok(dj)}.

Given a one variable dependent SCC S, we add ∀di ∈ S∀ok ∈ Dv∀dj ∈ Rok(di)
the clause v = ok ∧ d1i → d2j and ∀di ∈ S∀ok ∈ Dv the frame axiom: d2i ∧ v =

ok →
∨

dj∈R−1
ok

(di)
d1j . This frame axiom is sufficient as we know that the variable

v will have exactly one value.

4 Parallelism and Axioms

The encoding of axioms described in the previous section solely extends SAT
planning to allow for evaluating axioms after one action has been executed.

8 We also allow for purely implicational axioms as well as dependency on a single
other derived predicate from a different SCC. They can be viewed as a set of axioms
v = o ∧ di → dj for all values o ∈ Dv.
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However, a critical element of efficiency for modern SAT-based planners is the
ability to find parallel plans, i.e., plans in which at every time step multiple
actions can be executed in parallel.

For adapting the ∃-step encoding to axioms, we need to change (1) the con-
struction of the DG and (2) potentially adapt the chain clauses. To construct
the DG, we need to determine, for every fact f (either an FDR fact or a de-
rived predicate literal), the set nee(f) ⊆ A of actions that need f , and the set
del(f) ⊆ A of actions that delete it. For nee(f) nothing changes – an action a
needs a derived predicate d or its negation ¬d iff it occurs in its precondition or
a conditional effect condition.

For del(f), the effects of an action can, via axioms, have an indirect effect
on derived predicates. We need to determine which derived predicates could be
made true or false by an action. Determining this exactly is NP-complete, as we
can use FDR variables not mentioned by a to choose a valuation and the axioms
to evaluate a SAT formula. Thus, we approximate. We maintain four sets T a

def,
T a
pos, F

a
def, and F a

pos – sets of facts that the action a could possibly (T a
pos, F

a
pos)

or def initively (T a
def, F

a
def) make True or False, respectively. Whenever we add a

derived predicate d to any of these sets, we add ¬d to the respective negated set.
We first compute definitive effects. For FDR variables, we add for every effect
v = oi of action a, v = oi to T a

def and v = oj for oi ̸= oj to F a
def. Next we handle

definitive effects on derived predicates. For every axiom ax, where ℓ(ax) ⊆ T a
def,

we add r(ax) to T a
def. For every derived predicate d for which all axioms ax that

derive d, i.e., all axioms with d = r(ax) have ℓ(ax)∩ F a
def ̸= ∅, we add d to F a

def.
We repeat this until convergence.

We proceed to compute possible effects by tracing possible changes through
the axioms. Initially, we set T a

pos := T a
def and F a

pos := F a
def. If there is an axiom

ax so that T a
pos ∩ ℓ(ax) ̸= ∅ and F a

def ∩ ℓ(ax) = ∅ – that is at least one of its
conditions can possibly turn true, but none of the conditions definitely turns
false – the axiom might be newly applicable and might turn r(ax) true. We
thus add r(ax) to T a

pos. We cannot take into account whether any condition is
actually false in a given state as we need to derive del(·) state independently. It
cannot be the case that r(ax) ∈ F a

def as it can only be added if F a
def ∩ ℓ(ax) ̸= ∅.

Similarly, if there is an axiom ax so that F a
pos ∩ ℓ(ax) ̸= ∅ and r(ax) ̸∈ T a

def, i.e.,
for which one condition might turn false and the right-hand-side is not known
to definitely turn true via another axiom, we add r(ax) to F a

pos.

Given these sets, we can approximate that an action a potentially makes all
literals in F a

pos false, i.e., we add a to all del(d) for d ∈ F a
pos. From this point on,

we use the standard definition of the DG, i.e., an action ai disables aj if they
have non-contradictory preconditions (here we don’t consider axioms at all) and
if ∃v = o : ai ∈ del(v = o)∧aj ∈ nee(v = o). The generation of the ∃-step’s chain
constraints then proceeds as normal – treating derived predicates d as if they were
regular facts using the updated definition of del(). As F a

pos over-approximates
which literals over derived predicates can become false, the conditions (2) and
(3) of Def. 2 are satisfied with respect to the derived predicates. This ensures
correctness of the encoding.
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5 Handling Large Disabling Graphs

This section describes how we handle large DGs in practice.
In some domains, the sets del(f) and nee(f) can be large for some facts

f (more than 1.000 actions, mostly for derived predicates). Here, the DG can
contain up to |del(f)| · |nee(f)| edges, which can exhaust the planner’s memory.
In these cases, often at most one of the affected actions can be executed at any
time anyway, as all actions disable each other, making any explicit reasoning
about them in the DG useless. Hence, we commit to executing at most one of
these actions and will always execute it as the last action of a time step. Then,
we accumulate these actions in a set L of last actions.

We use a threshold T 9 to determine when the disabling edges for a single fact
should not be generated. If |del(f)| · |nee(f)| > T , we add all actions in del(f) to
the set of last actions L and do not generate any edges for them. When computing
the action ordering A⃗ for the ∃-step encoding, we ignore actions in L and place
them last in the ordering. For the ∃-step semantics, we do not generate any chain
for f and add an at-most-one constraint over all action variables a@n ∈ L for
all time steps n.

To prove soundness, consider a case in which a set of actions is selected that
is not executable. This set must contain exactly one action a∗ out of L, otherwise
it is executable by virtue of the correctness of the ∃-step encoding. Of this set,
a∗ will be executed last. So this sequence can only be non-executable if a∗’s
preconditions are not met. This would only be the case, if there is an action
deleting a fact that a∗ has as precondition. If this is a fact for which a chain was
generated, a∗ cannot be selected to be executed. Else, all deleters of this fact are
part of L. As a∗ was selected, no other a ∈ L can be chosen for execution, and
thus a∗’s precondition could not have been deleted. For completeness, note that
it is possible to select only a single action a ∈ L and no action a ∈ A \ L and
vice versa.

6 Empirical Evaluation

We implemented our planner AxSAT, using the described encoding, on top of
Fast Downward (FD) in version 23.06 [16]. Our experiments were conducted on
a cluster of Intel Xeon Gold 6130 CPUs using Downward Lab 8.2 [36], with
runtime/memory limits of 30min/3.5GiB. We use the benchmark set collected
by Speck et al. [42], which contains 1269 problem instances with axioms. As
a backend solver for SAT formulas, we use Kissat10. AxSAT’s code11 and the
empirical results are publicly available [5].

We run AxSAT in two different search configurations, an iterative mode,
working on one formula at a time, and a parallel mode, which handles mul-
tiple formulas in parallel. The iterative mode constructs formulas for increasing

9 In our experiments (Section 6), this value is set to 5 · 106.
10 https://github.com/arminbiere/kissat
11 https://github.com/galvusdamor/decoupling-transformer-sat
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Coverage Action Parallelism
Iterative Parallel Iterative Parallel

Domain # blind SymK Seq ∃ Seq ∃ LAMA ∃ ∃

airport-adl 50 19 19 11 21 28 49 40 2.24 1.98
appn-adl 33 11 23 16 33 33 33 33 8.41 8.08
assembly 30 0 11 2 16 17 30 30 4.7 4.34
blocker 7 7 6 7 6 7 6 4 1 0.87
blocks-axioms 35 18 30 35 35 35 35 35 1 0.94
cats-horndl 20 20 20 11 20 20 20 20 13.1 2.62
drones-horndl 24 23 16 23 23 23 23 23 2.17 2.25
fridge 30 0 1 0 30 21 30 30 26.6 26.6
ged1-ds2nd 12 12 8 12 12 12 12 12 1 0.5
ghosh-cc2 27 9 0 14 18 18 20 20 1.63 1.45
grid-axioms 5 1 3 4 3 4 4 5 1.33 1.08
miconic-axioms 150 60 150 35 150 150 150 150 15.5 6.2
miconic-fulladl 150 78 111 59 72 130 139 139 1.88 1.8
openstacks 30 7 16 5 7 20 22 30 1.66 1.35
openstacks-opt08-adl 30 8 30 3 6 30 30 30 1.38 1.25
openstacks-sat08-adl 25 4 12 2 3 12 14 25 1.37 1.33
optical-telegraphs 48 2 3 1 48 6 48 4 32.45 25.5
philosophers 48 5 12 3 48 12 48 46 25.5 22.95
psr-large 50 14 25 22 25 25 28 44 5.84 3.27
psr-middle 36 26 36 35 36 36 36 36 6.43 3.88
queens-horndl 30 23 10 30 30 30 30 30 3.93 2.07
robot-horndl 56 45 42 37 37 53 52 56 1 0.94
robotConj-horndl 56 45 43 41 41 56 56 56 1 0.93
snowman-basic 41 30 29 13 12 16 17 22 1.06 0.97
snowman-cheating 41 33 32 33 36 36 36 23 2.28 2.19
snowman-reach 41 27 25 19 17 20 18 23 1.07 0.9
sokoban-axioms 30 24 25 12 12 13 13 28 1 0.81
taskassign-horndl 20 20 12 20 20 20 20 20 11.95 5.51
tpsa-horndl 15 4 6 10 9 12 12 15 1.17 1
trucks 30 8 9 5 19 13 25 15 2.7 2.44
vta-horndl 15 15 4 13 13 15 15 15 1 1
vta-roles-horndl 15 15 0 13 13 15 15 15 1 1

others 39 37 37 37 37 37 37 37 2.15 2.01∑
1269 650 806 583 908 975 1123 1111 5.06 3.92

Table 1. Coverage results (number of instances solved) and action parallelism on the
axiom benchmark set. See text for a detailed discussion.

plan-length bounds, incrementing it by 1 in each iteration, and runs the SAT
solver until it terminates, i.e., shows the formula (un)satisfiable, or runs out of
time/memory. Rintanen [32] proposed a parallel mode, in which solving multiple
bounds is interleaved in a round-robin fashion on a single core. We use a simpler
variant that in our experiments performed better: we run the formulas for differ-
ent bounds sequentially, but limit each to 5min. If Kissat runs into our time or
memory limit, we proceed to the next bound. This “parallel mode” increases the
plan-length exponentially, i.e., iteration i runs with limit 5 · (

√
2)i, like Mada-

gascar [30]. On the encoding side, we distinguish between the sequential (Seq),
with one action per time step, and the ∃-step encoding (∃).

As baselines, we compare our approach against FD’s blind search, the sym-
bolic search of SymK [41], and the first iteration of LAMA [29]. Note that
we cannot compare ourselves against other SAT-based planner as these do not
support axioms in the problem descriptions. There do exist methods based on
answer-set programming and integer linear programming that support axioms,
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Fig. 1. Per-instance comparison of runtime (left) and plan length (right) for LAMA
and our parallel ∃-step planner on the axiom benchmarks.

implemented in ASPlan and IPlan [26], respectively Plasp [9]. Unfortunately,
neither ASPlan nor IPlan are publicly available. The axiom support for Plasp is
very limited, only allowing for axioms that result from compiling away complex
action preconditions and effects, but derived predicates are not supported. This
means that Plasp is applicable only to a small fraction of our benchmarks, so
we omit it in our evaluation.

The left of Table 1 shows coverage results (number of solved instances).
Overall, the iterative sequential algorithm is not competitive, but it outperforms
blind search and SymK significantly on a few domains (blocks, gosh, queens,
tpsa). Our iterative ∃ variant outperforms both of these baselines overall, where
the approaches have their strengths in different domains. Our parallel search
variants improve by a lot over the iterative ones. With ∃-step encoding, our
planner is overall better than LAMA, which is the state-of-the-art planner in
satisficing classical planning with axioms. Taking a closer look at the two best-
performing configurations, we observe that both solve all instances across many
domains. On the remaining domains, they clearly have complementary strengths.
Our SAT-based planner does very well in airport, optical-telegraphs, snowman-
cheating, and trucks, whereas LAMA shines in openstacks, psr, snowman basic
and reach, as well as sokoban. The scatter plot in Figure 1 (left) sheds further
light at this comparison. It clearly confirms the complementary strengths of the
two approaches, with both techniques obtaining speed-ups of several orders of
magnitude over the other in different domains. Overall, our SAT-based approach
shows state-of-the-art performance on domains with axioms.

In the right of Table 1 we show the action parallelism in the plans found by
iterative ∃ and parallel ∃ on instances commonly solved by these two configu-
rations. We compute the parallelism as the ratio between plan length and the
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number of steps encoded in the SAT formula. Hence, the sequential encoding al-
ways obtains a parallelism of at most 1.0 (there can be steps in which no action
is applied). We have two main observations: (1) in domains with high paral-
lelism, ∃ significantly improves of Seq, and (2) in the same domains parallel ∃ is
very competitive with LAMA. Another observation is that parallel ∃ typically
achieves lower parallelism than the iterative variant, which is due to the greedy
behavior of increasing the bound without waiting for the SAT solver to prove
the respective formula to be unsatisfiable.

We compare the solution quality of LAMA and the parallel ∃ configuration in
Figure 1 (right). There is no clear advantage for either of the methods. Overall,
the parallel ∃ configuration finds shorter solutions in 344 instances (mostly in
appn-adl, assembly, and robotConj-horndl) than LAMA, and longer solutions in
309 instances (mostly in airport-adl, blocks-axioms, philosophers).

We also analyzed the structure of the TDG in the benchmark instances. A
substantial amount of SCCs of the TDGs has size one, which are by definition
implicational as they lack internal axioms. In most domains, all derived variables
are in size-1 SCCs. Exceptions are psr (only 44%, respectively 51% of SCCs are
size-1), snowman-reach (46%), social-planning (86%) and sokoban (85%). These
are, with the exception of social-planning, the domains in which our approach
falls behind LAMA.

7 Conclusion

We introduce the first encoding for axioms and derived predicates for SAT-based
planning. This closes a significant gap, as other common planning paradigms,
such as heuristic explicit-state search or symbolic search, have previously sup-
ported planning with axioms. We show a sequential encoding as well as an exists-
step encoding tailored to axioms, which is the standard in modern SAT-based
planners. Our planner AxSAT, based on this encoding, is competitive with the
state of the art in satisficing planning with axioms and performs favorably overall
compared to the well-known LAMA planner.

For future work, we plan to investigate encodings specifically designed for
more specialized forms of stratified axiom programs. A particularly interesting
direction is to study the recent decoupled task transformation [40], which embod-
ies decoupled search [14] and relies heavily on axioms. This includes examining
the relationship between decoupled search and action parallelism (∃-step encod-
ing). Further, we will consider encodings of parallelism in planning that admit
more parallelism, notably the relaxed ∃-step [45] and relaxed-relaxed ∃-step en-
codings [1]. Both are challenging to incorporate as they require reasoning about
when and importantly how the truth values of derived predicates changes during
the execution of actions inside of the SAT formula – in contrast to our encoding
which is based on a cautious precomputed estimate.
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